The First Two Years of Full-Scale Anaerobic Membrane Bioreactor (AnMBR) Operation Treating High-Strength Industrial Wastewater

2011 ◽  
Vol 6 (2) ◽  
pp. 1-2 ◽  
Author(s):  
Scott Christian
2011 ◽  
Vol 6 (2) ◽  
Author(s):  
Scott Christian ◽  
Shannon Grant ◽  
Peter McCarthy ◽  
Dwain Wilson ◽  
Dale Mills

The anaerobic membrane bioreactor (AnMBR) incorporates anaerobic digestion and membrane filtration in one process to form an innovative technology for treating high-strength industrial wastewater. The first AnMBR installation in North America, also known as the largest AnMBR installation in the world, was built at Ken's Foods in Massachusetts, USA. Ken's Foods existing anaerobic process was upgraded to AnMBR in July 2008 to treat raw wastewater from the production of salad dressings and barbeque sauces. The system was converted to AnMBR due to lack of space, positive economics, and the ability to provide additional capacity for flow and organic load beyond the original anaerobic system design parameters. This AnMBR system has a design influent flow rate of 475 m3/d with 39,000 mg/l COD, 18,000 mg/l BOD, and 12,000 mg/l TSS. The AnMBR system consistently produces a high quality effluent with non-detectable TSS concentrations and average COD and BOD concentrations of 210 and 20 mg/l, with removals of 99.4 and 99.9 percent, respectively. The AnMBR system provides superior performance and a very low rate of membrane fouling with the aid of biogas scour across the membrane surface. The first 20 months of AnMBR operating expenses were reduced by 50 compared to the prior 12-month fiscal period due to increased system capacity, ability to treat wastewater with higher biomass, and elimination of the need to dewater and dispose of dewatered solids.


2003 ◽  
Vol 48 (1) ◽  
pp. 191-198 ◽  
Author(s):  
T.K. Chen ◽  
C.H. Ni ◽  
J.N. Chen ◽  
J. Lin

The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention critical to achieving more efficiency for biological degradation of pollutant. Although it is a new technology, the MBR process has been applied for industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is high technology manufacturing. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N) is very difficult to meet the discharge limits. This research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 5 m3/day capacity of MBR pilot plant consisted of anoxic, aerobic and membrane bioreactor was installed for evaluation. The operation was continued for 150 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5 items, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification was also successfully achieved. Furthermore, the effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L.


2006 ◽  
Vol 53 (11) ◽  
pp. 269-276 ◽  
Author(s):  
C.T. Hay ◽  
D.D. Sun ◽  
S.L. Khor ◽  
J.O. Leckie

A high strength industrial wastewater was treated using a pilot scale submerged membrane bioreactor (MBR) at a sludge retention time (SRT) of 200 d. The MBR was operated at a high sludge concentration of 20 g/L and a low F/M ratio of 0.11 during 300 d of operation. It was found that the MBR could achieve COD and TOC overall removal efficiencies at more than 99 and 98% TN removal. The turbidity of the permeate was consistently in the range of 0.123 to 0.136 NTU and colour254 absorbance readings varied from 0.0912 to 0.0962 a.u. cm−1. The sludge concentration was inversely proportional to the hydraulic retention time (HRT), yielded excellent organic removal and extremely low sludge production (0.0016 kgVSS/day).


2013 ◽  
Vol 225 ◽  
pp. 109-119 ◽  
Author(s):  
Noor Sabrina Ahmad Mutamim ◽  
Zainura Zainon Noor ◽  
Mohd Ariffin Abu Hassan ◽  
Adhi Yuniarto ◽  
Gustaf Olsson

Sign in / Sign up

Export Citation Format

Share Document