scholarly journals Thermodynamic evaluation of a combined-cycle power plant with MSF and MED desalination

2020 ◽  
Vol 10 (2) ◽  
pp. 146-157 ◽  
Author(s):  
M. H. Khoshgoftar Manesh ◽  
S. Kabiri ◽  
M. Yazdi ◽  
F. Petrakopoulou

Abstract Rising water scarcity and abundant brine water resources, especially in desert locations, call for the wider adaptation of desalination techniques. Furthermore, the interdependency of water and energy has gained more attention in recent years and it is expected to play an important role in the near future. The present study deals with both topics in that it presents the coupling of a power plant with desalination units for the simultaneous generation of energy and water in Iran. The power plant used in the analysis is the Qom combined-cycle power plant. The plant is integrated, first, with a multi-stage flash (MSF) unit and, then, with a multi-effect desalination (MED) unit, and it is evaluated using energy and exergy analyses. We find that the generated power of the integrated systems is decreased by 9.7% and 8.5% with the MED and the MSF units, respectively. Lastly, the freshwater production in the plant using MED is significantly higher than in the plant with MSF (1,000 versus 1,521 kg/s).

2020 ◽  
Vol 10 (2) ◽  
pp. 158-172
Author(s):  
M. H. Khoshgoftar Manesh ◽  
S. Kabiri ◽  
M. Yazdi ◽  
F. Petrakopoulou

Abstract In the coming years, numerous regions are expected to suffer from water scarcity. One of the technologies of great interest in facing this challenge has been the generation of freshwater through water desalination, a process that reduces the amount of salt and minerals to a standard level, making the water suitable for drinking or agricultural/industrial use. The efficiency of each desalination process depends on the concentration of salts in the raw water and the end-use of the produced water. The present study presents the exergetic and exergoeconomic analyses of the coupling of a power plant with desalination units for the simultaneous generation of energy and water in Iran. The plant is integrated, first, with a multi-stage flash (MSF) unit and, then, with a multi-effect desalination (MED) unit. We find that the cost of exergy destruction of the MED and MSF integrated plants is lower when compared to the standalone power plant by about 0.1% and 9.2%, respectively. Lastly, the freshwater production in the plant using MED is significantly higher than that in the plant with MSF (1,000 versus 1,521 kg/s).


2018 ◽  
Vol 41 (13) ◽  
pp. 1495-1504 ◽  
Author(s):  
Mir Sikander Ali ◽  
Qadir Nawaz Shafique ◽  
Dileep Kumar ◽  
Summeet Kumar ◽  
Sanjay Kumar

Sign in / Sign up

Export Citation Format

Share Document