scholarly journals Water demand management – shifting urban water management towards sustainability

2007 ◽  
Vol 7 (4) ◽  
pp. 49-56 ◽  
Author(s):  
S. Kayaga ◽  
I. Smout ◽  
H. Al-Maskati

Whereas the world population is increasing at a high rate, especially in urban areas, water resources have not only remained constant, but are being polluted at a high rate, which inevitably results in fresh water scarcity. Current urban water management concepts and practices cannot adequately respond to these changes. There is need for water professionals to change the way they manage water resources in urban areas if we are to ensure economic and environmental sustainability. In addition to consideration of supply-side options, we need to apply water demand management (WDM) tools both on the utility and end-user sides. This paper describes the basic concepts of WDM, provides a case study of their application in Bahrain, and briefly introduces the five-year EU-funded SWTCH Project that aims at creating a paradigm shift in urban water management practices.

2019 ◽  
Vol 14 (3) ◽  
pp. 703-713 ◽  
Author(s):  
Earl W. Lewis ◽  
Chad Staddon ◽  
Johannes Sirunda

Abstract This paper gives an overview of the main challenges and achievements faced by Windhoek's water management sector. The paper highlights pertinent issues arising from increased water demand, and also explores current and future water supply augmentation options. Water planners experience management challenges as a result of a combination of factors, mainly, lack of funds and staff, limited expertise, poor communication between stakeholders, and weak regulation and enforcement. In order to meet these challenges water managers need to develop more robust and resilient strategies, including greater focus on water demand management.


2014 ◽  
Vol 70 (11) ◽  
pp. 1774-1781 ◽  
Author(s):  
Yifan Ding ◽  
Deshan Tang ◽  
Yuhang Wei ◽  
Sun Yin

Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water–society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social–economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7709
Author(s):  
Günter Müller-Czygan ◽  
Viktoriya Tarasyuk ◽  
Christian Wagner ◽  
Manuela Wimmer

Water is increasingly taking center stage when it comes to coping with climate change. Especially in urban areas, negative consequences from heavy rainfall events and prolonged dry periods are rising worldwide. In the past, the various tasks of urban water management were performed by different departments that often did not cooperate with each other (water supply, wastewater disposal, green space irrigation, etc.), as the required water supply was not a question of available water volumes. This is already changing with climate change, in some cases even dramatically. More and more, it is necessary to consider how to distribute available water resources in urban areas, especially during dry periods, since wastewater treatment is also becoming more complex and costly. In the future, urban water management will examine water use in terms of its various objectives, and will need to provide alternative water resources for these different purposes (groundwater, river water, storm water, treated wastewater, etc.). The necessary technological interconnection requires intelligent digital systems. Furthermore, the water industry must also play its role in global CO2 reduction and make its procedural treatment processes more efficient; this will also only succeed with adequate digital systems. Although digitization has experienced an enormous surge in development over the last five years and numerous solutions are available to address the challenges described previously, there is still a large gap between the scope of offerings and their implementation. Researchers at Hof University of Applied Sciences have investigated the reasons for this imbalance as part of WaterExe4.0, the first meta-study on digitization in the German-speaking water industry, funded by the German Federal Ministry of Education and Research. Only 11% of roughly 700 identified products, projects and studies relate to real applications. For example, the surveyed experts of the water sector stated that everyday problems are considered too little or hardly at all in new solutions, which greatly overburdens users. Furthermore, they see no adequate possibility for a systematic analysis of new ideas to identify significant obstacles and to find the best way to start and implement a digitization project. The results from four methodologically different sub-surveys (literature and market research, survey, expert interviews and workshops) provide a reliable overview of the current situation in the German-speaking water industry and its expectations for the future. The results are also transferable to other countries.


2014 ◽  
Vol 17 (2) ◽  
pp. 176-192 ◽  
Author(s):  
Dimitrios Bouziotas ◽  
Evangelos Rozos ◽  
Christos Makropoulos

Urban water management is currently understood as a socio-technical problem, including both technologies and engineering interventions as well as socioeconomic dimensions and contexts vis-à-vis both end users and institutions. In this framework, perhaps the most important driver of urban water demand, at the intersection between engineering, social and economic domains, is urban growth. This paper examines aspects of the interplay between the dynamics of urban growth and the urban water cycle. Specifically, a cellular automata urban growth model is re-engineered to provide growth patterns at the level of detail needed by an urban water cycle model. The resulting toolkit is able to simulate spatial changes in urban areas while simultaneously estimating their water demand impact under different water demand management scenarios, with an emphasis on distributed technologies whose applicability depends on urban form. The method and tools are tested in the case study of Mesogeia, Greece, and conclusions are drawn, regarding both the performance of the urban growth model and the effectiveness of different urban water management practices.


AMBIO ◽  
2010 ◽  
Vol 39 (7) ◽  
pp. 467-475 ◽  
Author(s):  
YanLing Jiang ◽  
YuanSheng Chen ◽  
Tamim Younos ◽  
HeQing Huang ◽  
JianPing He

2015 ◽  
Vol 5 (0) ◽  
pp. 9781780402437-9781780402437 ◽  
Author(s):  
L. Wolf ◽  
B. Morris ◽  
S. Burn

2011 ◽  
Vol 2 (4) ◽  
pp. 288-312 ◽  
Author(s):  
Netra B. Chhetri

Planning for sustainable water management in the arid region of the southwestern USA is challenging mostly due to only partial understanding of factors converging around water supply and demand. Some of the factors that prompt concern about the adequacy of water resources are: (a) a growing urban population seeking a range of services, including the need to preserve and enhance aquatic ecosystems; (b) dwindling water storage due to multi-year drought conditions; and (c) the prospect of human-induced climate changes and its consequences in the hydrologic system of the region. This study analyzes the potential for water saving in the Phoenix Active Management Area (AMA) of Central Arizona, which includes the city of Phoenix, one of the fastest growing metropolitan areas in the country. Based on an extensive literature review and secondary data analysis, this paper investigates multiple factors that place increasing strain on current water resources, and attempts to extend this analysis to 2025. Outdoor water use within the residential landscape is the most important factor that strains water resources in Phoenix AMA. Any gain in efficiency through agricultural water demand management would not only improve the availability of water for other uses in the AMA, but would facilitate adaptation of the agricultural system to climate and other ongoing changes.


Author(s):  
Binaya Kumar Mishra ◽  
Shamik Chakraborty ◽  
Pankaj Kumar ◽  
Chitresh Saraswat

Sign in / Sign up

Export Citation Format

Share Document