Strategies of coagulant optimisation to improve the removal of turbidity and Ceratium hirundinella cells during conventional drinking water purification

2014 ◽  
Vol 14 (5) ◽  
pp. 820-828 ◽  
Author(s):  
H. Ewerts ◽  
S. Barnard ◽  
A. Swanepoel ◽  
H. H. du Preez ◽  
S. Janse van Vuuren

The dinoflagellate, Ceratium hirundinella (C. hirundinella) cells are known to cause many problems when source water due for purification contains relatively high concentrations. The objective of this study was to investigate strategies for the effective and simultaneous removal of turbidity and C. hirundinella cells using turbidity and total photosynthetic pigments (TPP) as indicators of appropriate coagulant dosages during conventional drinking water purification. Source water samples with low turbidity, and high number of C. hirundinella cells were collected. A laboratory-scale conventional water purification plant was used to simulate coagulation, flocculation, sedimentation and sand filtration. Various coagulant options were dosed as part of conventional coagulation. The coagulant option Ca(OH)2–organic polymer achieved the best removal of both turbidity (50%) and C. hirundinella cells (75–82%) after sedimentation using TPP as an indicator. Ca(OH)2–SiO2 and organic polymer alone achieved better removal of C. hirundinella (57–75%) and turbidity (33–50%) respectively when TPP was used as an indicator rather than turbidity. Sand filtration removed the remaining turbidity and C. hirundinella cells from the supernatant completely. Implementing new purification strategies may increase treatment costs, but the focus of drinking water purification utilities should always be primarily the production of safe and aesthetically acceptable drinking water.

RSC Advances ◽  
2017 ◽  
Vol 7 (36) ◽  
pp. 22433-22440 ◽  
Author(s):  
H. Ewerts ◽  
S. Barnard ◽  
A. Swanepoel

The removal efficacy ofCeratiumcells from source water was evaluated. The best ZP for coagulation were achieved with organic polymer and Ca(OH)2. Cells were able to restore their ZP after 120 and 240 minutes settling time.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1830 ◽  
Author(s):  
Jia Niu ◽  
Ikuro Kasuga ◽  
Futoshi Kurisu ◽  
Hiroaki Furumai

Granular activated carbon (GAC) has been widely introduced to advanced drinking water purification plants to remove organic matter and ammonium. Backwashing, which is the routine practice for GAC maintenance, is an important operational factor influencing the performance of GAC and its microbial biomass. In this study, the effects of backwashing on the ammonium removal potential of GAC were evaluated. In addition, abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) on GAC were analyzed. GAC samples before and after backwashing were collected from a full-scale drinking water purification plant. Samplings were conducted before and after implementation of prechlorination of raw water. The results showed that the ammonium removal potential of the GAC increased by 12% after backwashing before prechlorination (p < 0.01). After implementing the prechlorination, the ammonium removal potential of the GAC decreased by 12% even after backwashing (p < 0.01). The AOA was predominant on the GAC in the two samplings. Regardless of prechlorination, the amounts of the AOA and the AOB remained at the same level before and after backwashing. Analysis of the backwashing water indicated that the amounts of the AOA and AOB washed out from the GAC were negligible (0.08%–0.26%) compared with their original amounts on the GAC. These results revealed the marginal role of backwashing on the biomass of ammonia oxidizers on GAC. However, the results also revealed that backwashing could have a negative impact on the ammonium removal potential of GAC during prechlorination.


Sign in / Sign up

Export Citation Format

Share Document