Decomposition analysis of water utilization in the Beijing-Tianjin-Hebei region between 2003 and 2016

2018 ◽  
Vol 19 (2) ◽  
pp. 626-634
Author(s):  
Hongrui Wang ◽  
Siyang Hong ◽  
Tao Cheng ◽  
Xiayue Wang

Abstract Water crisis is prominent in the Beijing-Tianjin-Hebei region, therefore, the internal relations between water utilization changes and socioeconomic development must be urgently analysed. Based on analyses of the spatiotemporal characteristics of total water utilization, the factors that influenced changes in industrial water utilization in the Beijing-Tianjin-Hebei region from 2003 to 2016 were studied using a factor decomposition model. The results show that the scaling effect (SCE) increased water utilization by 31.78 billion m3 over those 13 years and was the only driving effect that caused industrial water utilization to increase. The structural effect (STE) and technological effect (TEE) reduced industrial water utilization by 14.93 and 20.44 billion m3, respectively. The TEE was the main reason for the decrease in industrial water utilization in Beijing, accounting for a reduction of 96.5% in total industrial water utilization. The STE was stronger than TEE in Tianjin, with associated decreases of 94.65% and 90.1% in total industrial water utilization, respectively. In Hebei, the STE and TEE reduced total industrial water utilization by 60.23% and 85.46%, respectively. Adjusting the industrial structure and promoting water-saving technology are efficient methods of alleviating the water shortage in the study area.

2013 ◽  
Vol 726-731 ◽  
pp. 3559-3563
Author(s):  
Wen Hui Lv ◽  
Zhi Gang Gao

DEA was used to estimate the relative efficiency of industrial water in Xinjiang. Using data from 2005 to 2010 for fifteen prefectures in Xinjiang, this research selected productive water usage, employed persons, land area and fixed asset investment as the inputs, and chose gross regional product as the output. The scale redundancy ratio and technical redundancy ratio were also calculated. On the basis, the water utilization relative efficiency was calculated for every prefecture and the spatial-temporal variation of regional industrial water distribution were discussed. The spatial analyses show that the relative efficiency of industrial water utilization is distinctly different among the fifteen prefectures. Agriculture-oriented areas have relatively low water use efficiency, mainly due to the large proportion of agricultural water and seriously wasted water. Every prefecture should adjust the industrial structure and strengthen the agricultural water's conservation according to local condition.


2019 ◽  
Vol 11 (23) ◽  
pp. 6571 ◽  
Author(s):  
Xuhui Ding ◽  
Zhu Fu ◽  
Hongwen Jia

Considering the undesirable output, this paper adopted the data envelopment analysis (DEA) model with the slack variable and super efficiency improvement, to measure industrial water utilization efficiency in the Yangtze River Economic Belt. The paper also creatively introduces urbanization level and urban primacy into driver factors’ estimation by stochastic and fixed Tobit models, exploring how urbanization characteristics affected the water utilization in regional industrial production. The results showed that industrial water efficiency has maintained an upward trend during the whole period, while most central and western provinces have shown a U-shaped trend of decreasing first and then rising. However, the industrial water utilization efficiency of central regions is the lowest, and the eastern regions are the highest, catching up with western regions. Utilization efficiency shows an overall convergence during the research period from 2005 to 2017. Regarding the factors’ estimation, both population urbanization and land urbanization negatively affected industrial water utilization efficiency, particularly blind expansion and disorderly development. The urban primacy meant the unbalance of urbanization, which would lead to urban diseases and pollution transfer, while the effects of urban primacy depended on the urbanization level. However, the utilization efficiency of industrial water did not become better automatically along with urbanization development; therefore, the scale and speed of urbanization should be scientifically formulated. The effects of the level of economic development, the advanced industrial structure, and the level of foreign investment are significantly negative.


Water Policy ◽  
2014 ◽  
Vol 16 (5) ◽  
pp. 805-823 ◽  
Author(s):  
Mo Guo ◽  
Jin-nan Wang ◽  
Jun Bi

Water shortage in China is caused by the uneven distribution of water resources, a situation that can worsen given overexploitation and pollution. Chemical oxygen demand (COD) emission is considered the most important water pollutant. Using the logarithmic mean Divisia index (LMDI) method, we analyse the main driving factors of the 2001–2011 changes in China's industrial water consumption-related COD emission. The main driving factors of COD emission are classified into five effects, namely, end-of-pipe treatment, COD emission intensity, water intensity, structural effect, and scale effect. In contrast to previous studies, the current work considers water consumption by using water intensity as an index. Results show that end-of-pipe treatment, with an effect of up to 35%, was the primary factor that influenced emission reduction during the studied period. Pollution reduction policies are key drivers of promoting advancements in technologies for reducing COD emission in industrial sectors, and technical efficiency in 2001–2011.


2017 ◽  
Vol 76 (11) ◽  
pp. 2876-2887 ◽  
Author(s):  
Yizi Shang ◽  
Shibao Lu ◽  
Jiaguo Gong ◽  
Ling Shang ◽  
Xiaofei Li ◽  
...  

Abstract A recent study decomposed the changes in industrial water use into three hierarchies (output, technology, and structure) using a refined Laspeyres decomposition model, and found monotonous and exclusive trends in the output and technology hierarchies. Based on that research, this study proposes a hierarchical prediction approach to forecast future industrial water demand. Three water demand scenarios (high, medium, and low) were then established based on potential future industrial structural adjustments, and used to predict water demand for the structural hierarchy. The predictive results of this approach were compared with results from a grey prediction model (GPM (1, 1)). The comparison shows that the results of the two approaches were basically identical, differing by less than 10%. Taking Tianjin, China, as a case, and using data from 2003–2012, this study predicts that industrial water demand will continuously increase, reaching 580 million m3, 776.4 million m3, and approximately 1.09 billion m3 by the years 2015, 2020 and 2025 respectively. It is concluded that Tianjin will soon face another water crisis if no immediate measures are taken. This study recommends that Tianjin adjust its industrial structure with water savings as the main objective, and actively seek new sources of water to increase its supply.


2013 ◽  
Vol 252 ◽  
pp. 258-265 ◽  
Author(s):  
Jinyun Zhang ◽  
Yan Zhang ◽  
Zhifeng Yang ◽  
Brian D. Fath ◽  
Shengsheng Li

2015 ◽  
Vol 28 ◽  
pp. 73-80
Author(s):  
Mohan Bikram Shrestha ◽  
Udhab Raj Khadka

The water footprint is consumption-based indicator of water use. Water footprint is defined as the total volume of both indirect and the direct freshwater used for producing goods and services consumed by individuals or inhabitants of community. There are many studies regarding the direct water use but studies incorporating both direct and indirect water use is deficient. This study tries to estimate total volume of water based on the consumption pattern of different commodities by individuals of Kathmandu Metropolitan city using extended water footprint calculator. The average water footprint of individuals appears to be 1145.52 m3/yr. The indirect and direct water footprint appears to be 1070.82 Mm3/yr and 46.59 Mm3/yr respectively which cumulatively give the total water footprint of Kathmandu Metropolitan City of 1117.40 Mm3/yr. This volume is equal to 2.27 times the annual flow the River Bagmati. The indirect water footprint includes food water footprint of 1055.60 Mm3/yr or 2.14 times the annual flow and industrial water use of 15.22 Mm3/yr or 0.03 times the annual flow while the direct water footprint includes domestic water use of 46.59 Mm3/yr or 0.09 times the annual flow. In food water footprint, cereals consumption shared the highest contribution of 34.82% followed by meat consumption with share of 32.62% in total water footprint. Per capita per day water use of inhabitants appears to be 3138 liters which includes water use in food items of 2965 liters, industrial water use of 43 liters and domestic water use of 131 liters. The per capita per day domestic water use is 90 liters more than supplement of 41 liters by the water operator of Kathmandu Valley. Per capita per day domestic water use is already 5 liters more than expected improvement in water supplement of 126 liters per capita per day in 2025 after accomplishment of Melamchi water project. And, it is expected to increase further observing the rapid urbanization of Kathmandu Metropolitan City. The study showed water footprint of individuals is directly related to food consumption behavior, life style and services used therefore it is necessary to initiate water offsetting measures at individual level and water operator to find environmentally sustainable alternatives along with ongoing water project to fulfill demand. J. Nat. Hist. Mus. Vol. 28, 2014: 73-80


2014 ◽  
Vol 955-959 ◽  
pp. 3343-3346
Author(s):  
Jing Chen ◽  
Da Wei Yan

More reasonable management for water resources use may be critical to survive water crisis and realize sustainable development of urban-water system. This work attempts to set up a assessment model for regional industrial water utilization structure based on synergetics theory and grey method. In this model, both economic benefit and environmental effect are considered.


2013 ◽  
Vol 726-731 ◽  
pp. 1863-1866 ◽  
Author(s):  
Fang Zhang ◽  
Gao Wa Naren ◽  
Ya Qiong Wang ◽  
Shu Qin Bai

A huge amount of industrial water is necessary for continuous development of industries in the world. Various mineral scales forming at facilities on the ground within the water utilization process due to dissolved salts in the natural waters. Silica scale is a significantly serious problem to prevent the effectively operation of industries due to its hard structure and low solubility. This paper only focus on formation of silica scales, summarized its formation mechanism, influence factors and prevention methods.


Sign in / Sign up

Export Citation Format

Share Document