scholarly journals Evaluation of treated municipal wastewater effluent for agricultural irrigation purposes using the fuzzy effluent quality index (FEQI)

2019 ◽  
Vol 20 (1) ◽  
pp. 148-156
Author(s):  
Seyed Hesam Alihosseini ◽  
Ali Torabian ◽  
Farzam Babaei Semiromi

Abstract The issues of freshwater scarcity in arid and semi-arid areas could be reduced via treated municipal wastewater effluent (TMWE). Artificial intelligence methods, especially the fuzzy inference system, have proven their ability in TMWE quality evaluation in complex and uncertain systems. The primary aim of this study was to use a Mamdani fuzzy inference system to present an index for agricultural application based on the Iranian water quality index (IWQI). Since the uncertainties were disregarded in the conventional IWQI, the present study improved this procedure by using fuzzy logic and then the fuzzy effluent quality index (FEQI) was proposed as a hybrid fuzzy-based index. TMWE samples of the Gheitarie wastewater treatment plant in Tehran city recorded from 2011 to 2017 were taken into consideration for testing the ability of the proposed index. The results of the FEQI showed samples categorized as ‘Excellent’ (21), ‘Good’ (10), ‘Fair’ (4), and ‘Marginal’ (1) for the warm seasons, and for the cool seasons, the samples categorized as ‘Excellent’, ‘Good’ and ‘Fair’ were 17, 18 and 1, respectively. Generally, a comparison between the IWQI and proposed model results revealed the FEQI's superiority in TMWE quality assessment.

2015 ◽  
Vol 787 ◽  
pp. 322-326 ◽  
Author(s):  
V. Nirmala ◽  
K.R. Leelavathy ◽  
Sivapragasam Sowndharya ◽  
Parthiban Bama

A Fuzzy Inference System (FIS) is considered as an effective tool for solution of many complex engineering systems when ambiguity and uncertainty is associated with the systems. The water quality is an important issue of relevance in the context of present times. The proposed model is designed to predict Water Quality Index (WQI) for Chunnambar, Ariyankuppam, Puducherry Region, Southern India. A systematic investigation of the pollution level at Chunnambar from March 2013 to February 2014 was carried out. The untreated domestic wastes from various parts of the Ariyankuppam town are directly discharged into the river which leads to increased level of pollution. The present studies emphasis on the magnitude of pollution by monitoring key water quality parameters such as Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), pH and Temperature. FIS simplifies and speed up the computation of WQI as compared to the currently existing standards. In this paper, the proposed model is compared with Indian Water Quality Index (IWQI) and it is found that the designed model predicts accurately.


2021 ◽  
Vol 6 (3) ◽  
pp. 75-85
Author(s):  
Nor Hayati Shafii ◽  
Nur Aini Mohd Ramle ◽  
Rohana Alias ◽  
Diana Sirmayunie Md Nasir ◽  
Nur Fatihah Fauzi

Air pollution is the presence of substances in the atmosphere that are harmful to the health of humans and other living beings. It is caused by solid and liquid particles and certain gases that are suspended in the air.  The air pollution index (API) or also known as air quality index (AQI) is an indicator for the air quality status at any area.  It is commonly used to report the level of severity of air pollution to public and to identify the poor air quality zone.  The AQI value is calculated based on average concentration of air pollutants such as Particulate Matter 10 (PM10), Ozone (O3), Carbon Dioxide (CO2), Sulfur Dioxide (SO2) and Nitrogen Dioxide (NO2).  Predicting the value of AQI accurately is crucial to minimize the impact of air pollution on environment and human health.  The work presented here proposes a model to predict the AQI value using fuzzy inference system (FIS). FIS is the most well-known application of fuzzy logic and has been successfully applied in many fields.  This method is proposed as the perfect technique for dealing with environmental well known and tackling the choice made below uncertainty.  There are five levels or indicators of AQI, namely good, moderate, unhealthy, very unhealthy, and hazardous. This measurement is based on classification made from the Department of Environment (DOE) under the Ministry of Science, Technology, and Innovation (MOSTI). The results obtained from the actual data are compared with the results from the proposed model.  With the accuracy rate of 93%, it shows that the proposed model is meeting the highest standard of accuracy in forecasting the AQI value.


2017 ◽  
Vol 6 (2) ◽  
pp. 45 ◽  
Author(s):  
Ravi Kumar Sharma ◽  
Dr. Parul Gandhi

There are many algorithms and techniques for estimating the reliability of Component Based Software Systems (CBSSs). Accurate esti-mation depends on two factors: component reliability and glue code reliability. Still much more research is expected to estimate reliability in a better way. A number of soft computing approaches for estimating CBSS reliability has been proposed. These techniques learnt from the past and capture existing patterns in data. In this paper, we proposed new model for estimating CBSS reliability known as Modified Neuro Fuzzy Inference System (MNFIS). This model is based on four factors Reusability, Operational, Component dependency, Fault Density. We analyze the proposed model for diffent data sets and also compare its performance with that of plain Fuzzy Inference System. Our experimental results show that, the proposed model gives better reliability as compare to FIS.


Sign in / Sign up

Export Citation Format

Share Document