scholarly journals Variation of total phosphorus concentration and loads in the upper Yangtze River and contribution of non-point sources

Author(s):  
Qian Li ◽  
Zhonghua Yang ◽  
Yao Yue ◽  
Hua Zhong ◽  
Da Li

Abstract Excessive phosphorus has become the primary reason for the deterioration of the water quality of the upper Yangtze River Basin. Here, we comprehensively study variations in total phosphorus (TP) concentration and TP loads in the upper reach of the Yangtze River during 2004–2017 (after the impoundment of the Three Gorges Dam). Non-point source TP loads flowing into the mainstream are also analyzed based on the base flow segmentation method. TP concentration in the mainstream showed a fluctuating trend of decreasing–increasing–decreasing from 2004 to 2017. TP loads from tributaries had a greater impact on TP concentration in the mainstream than the retention effect. Non-point source was an important source of TP loads. Average TP loads from non-point source pollution were 24.9 × 106 kg per year, contributing about 50.8% of the TP loads from 2004 to 2017. Non-point source TP loads were mainly from Jinsha River and Jialing River, accounting for 59.1% of total non-point TP loads, and they mainly occurred in the wet season. The long-term variation trend of TP loads from tributaries was affected by economic development, intensity of pollution control and significant discharge change. In terms of pollution control, we suggest comprehensive treatment of point and non-point source pollution.

2019 ◽  
Vol 11 (8) ◽  
pp. 2246 ◽  
Author(s):  
Xiaowen Ding ◽  
Lin Liu

With the continuous enhancement of point source pollution control, non-point source (NPS) pollution has become an important factor in the deterioration of surface water quality. Meanwhile, due to the soaring global population, long-term effects of anthropogenic factors on non-point source pollution in large river basins have increasingly attracted worldwide attention. The Yangtze river is the largest river basin of China, and protecting its ecological environment has great significance on protecting the lifeline of the entire Yangtze river. In this study, the improved output coefficient and nutrient losses empirical model were used to conduct space–time simulations of non-point source pollution in the upper reaches of the Yangtze river (URYR) based on GIS during 1960–2003. This method reveals the anthropogenic effects of non-point source pollution in the upper reaches of the Yangtze river. The results indicate that the impacts of anthropogenic factors on dissolved pollutants increased significantly, while those on sediment and adsorbed pollutants increased first and then decreased during the simulation year. Agricultural land use and atmospheric deposition, as well as rural life, were the main sources of dissolved pollutants. In addition, dry land and paddy fields were the major sources of sediment and adsorbed pollutants. For the load intensities, the long-term effects of anthropogenic factors on dissolved pollutants increased rapidly, and those on the load intensity of sediment and adsorbed pollutants increased first and then decreased. Therefore, the study would propose some corresponding environmental management measures to strengthen environmental protection and non-point source pollution control in the upper reaches of the Yangtze river.


2013 ◽  
Vol 790 ◽  
pp. 445-448
Author(s):  
Pei Pei Shen ◽  
Lu Hua Yang ◽  
Zi Peng Guo ◽  
Hong Chao Liu

With the effectively control of the point source pollution, non-point source pollution has become the most serious pollution source in our country. In addition, the agricultural non-point source pollution control has become the most important part of the environmental protection. By referring to related journals, this article makes a comprehensive analysis on definition, characteristics, mechanism, harm and prevention countermeasures of agricultural non-point source pollution.


2019 ◽  
Author(s):  
◽  
Seungyub Lee

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Water pollution caused by nutrients, and the resulting eutrophication, have increased over time. This water pollution is increasingly caused by non-point source pollution, both nutrients and erosion. Controlling non-point pollution is important for water quality. However, non-point source pollution is not easy to track and control. In this case, management efforts can be solutions for these environmental issues in both urban and agricultural areas. In this dissertation, I focus on phosphorous (P) fertilizer because P is the limiting nutrient in freshwater systems. If we can reduce P runoff from urban and agricultural non-point sources, water quality can be improved. ... By analyzing national water quality and political economy data and by investigating a national survey of soybean producers, this dissertation found implications to increase adoption of environmentally friendly policies and practices. Solving this problem will require efforts to limit both residential and agricultural nonpoint source pollution. The results could be helpful policy makers to target specific regions to initiate environmental policies and extension efforts for designing educational programs to increase adoption rate as well as environmental quality.


Sign in / Sign up

Export Citation Format

Share Document