scholarly journals Sensitivity analysis and prediction of water supply and demand in Shenzhen based on an ELRF algorithm and a self-adaptive regression coupling model

Author(s):  
Xin Liu ◽  
Xuefeng Sang ◽  
Jiaxuan Chang ◽  
Yang Zheng

Abstract Given that sensitive feature recognition plays an important role in the prediction and analysis of water supply and demand, how to conduct effective sensitive feature recognition has become a critical problem. The current algorithms and recognition models are easily affected by multicollinearity between features. Moreover, these algorithms include only a single learning machine, which exposes large limitations in the process of sensitive feature recognition. In this study, an ensemble learning random forest (ELRF) algorithm, including multiple learning machines, was proposed to recognize sensitive features. A self-adaptive regression coupling model was developed to predict water supply and demand in Shenzhen in the next ten years. Results validate that the ELRF algorithm can effectively recognize sensitive features compared with decision tree and regular random forest algorithms. The model used in this study shows a strong self-adaptive ability in the modeling process of multiple regression. The water demand in Shenzhen will reach 2.2 billion m3 in 2025 and 2.35 billion m3 in 2030, which will exceeded the water supply ability of Shenzhen. Furthermore, three scenarios are designed in terms of water supply security and economic operation, and a comparative analysis is performed to obtain an optimal scenario.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1522 ◽  
Author(s):  
Hadi Heidari ◽  
Mazdak Arabi ◽  
Mahshid Ghanbari ◽  
Travis Warziniack

Changes in climate, land use, and population can increase annual and interannual variability of socioeconomic droughts in water-scarce regions. This study develops a probabilistic approach to improve characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships under shifts in water supply and demand conditions. A mixture Gamma-Generalized Pareto (Gamma-GPD) model is proposed to enhance characterization of both the non-extreme and extreme socioeconomic droughts. Subsequently, the mixture model is used to determine sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships, return period, amplification factor, and drought risk. The application of the framework is demonstrated for the City of Fort Collins (Colorado, USA) water supply system. The water demand and supply time series for the 1985–2065 are estimated using the Integrated Urban water Model (IUWM) and the Soil and Water Assessment Tool (SWAT), respectively, with climate forcing from statistically downscaled CMIP5 projections. The results from the case study indicate that the mixture model leads to enhanced estimation of sub-annual socioeconomic drought frequencies, particularly for extreme events. The probabilistic approach presented in this study provides a procedure to update sub-annual socioeconomic drought IDF curves while taking into account changes in water supply and demand conditions.


Asian Survey ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 1116-1136
Author(s):  
Amit Ranjan

The widening gap between water supply and demand is the biggest threat and challenge before Pakistan. Of the available water, much is polluted. Both scarcity and pollution threaten the agriculture sector, on which the country’s economy depends.


Sign in / Sign up

Export Citation Format

Share Document