scholarly journals Application of water resource multi-objective allocation service based on digital water network

Author(s):  
R. F. Du ◽  
Y. J. Zhang ◽  
Y. G. Liu ◽  
S. H. Liu ◽  
F. Wang ◽  
...  

Abstract The rational allocation of water resources plays an important role in alleviating disparities between supply and demand in areas with water shortages. With the continuous development of modern information technology, the pace of digitization is accelerating. Digital water networks provide a means of technical support, and their application is becoming more extensive. Based on the traditional study of water resource allocation combined with the development of modern information technology, this paper proposes a new operational application model of multi-objective water resource allocation based on a digital water network and applies this model to allocate water resources in the Heihe River basin in Xi'an, Shaanxi Province. First, a topological digital water network is constructed based on the connectivity criterion of water systems, and a cooperative configuration model with social, economic and ecological objectives is established. Second, the model and its solution method are componentized, and the water resource allocation business system is constructed based on the comprehensive integration platform to integrate the digital water network and the water resource multi-objective allocation business. Finally, to verify the scientificity and feasibility of the new model, the new model was applied to allocate water resources in the Heihe River basin of Xi'an city, Shaanxi Province.

Water Policy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 541-560
Author(s):  
Haopeng Guan ◽  
Lihua Chen ◽  
Shuping Huang ◽  
Cheng Yan ◽  
Yan Wang

Abstract Water shortages and pollution emerge because of anthropogenic demands. Since 2011, ‘China's Most Stringent Water Resources Management’ (CMSWRM) has been comprehensively enacted in the country. This paper presents the characteristics of the ‘three red lines’ (TRL) and a multi-objective optimal allocation model based on the TRL constraint, considering the benefits for society, the economy, and the environment. This model had been applied to the reasonable allocation of water supply and demand in Qinzhou for the planning years of 2020 and 2030. Two water resource allocation scenarios for these years were configured by setting different chemical oxygen demand (COD) concentrations for wastewater discharge in the municipal, secondary, tertiary, and agricultural sectors. The gamultiobj function based on the NSGA-II algorithm was used to solve the model in MATLAB. The results indicate that if COD concentrations in each sector are not reduced, then restrictions on domestic water sources will be necessary, both in 2020 and 2030. The two water resource allocation scenarios in 2020 and 2030 can provide a reference for decision-makers in Qinzhou to implement CMSWRM.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1588
Author(s):  
Hui Zhang ◽  
Jiaying Li

Under the current administrative system (AS) in China, the water resources governor allocates limited water resources to several users to realize the utility of water resources, leading to a principal–agent problem. The governor (referred to as the principal and she) wishes to maximize water resource allocation efficiency, while each user (referred to as the agent and he) only wishes to maximize his own quota. In addition, the governor cannot know water demand information exactly since it is the water users’ private information. Hence, this paper builds an ex ante improved bankruptcy allocation rule and an ex post verification and reward mechanism to improve water allocation efficiency from the governor’s perspective. In this mechanism, the governor allocates water among users based on an improved bankruptcy rule before the water is used up, verifies users’ information by various approaches, and poses a negative reward to them if their information is found to be false after the water is used up. Then, this mechanism is applied to Huangbai River Basin. Research results show that the improved allocation rule could motivate users to report demand information more honestly, and ex post verification could motivate water users to further report their true information, which, as a result, could improve the water allocation efficiency. Furthermore, this mechanism could be applied to the allocation of other resources.


2019 ◽  
Vol 01 (01) ◽  
pp. 1950003 ◽  
Author(s):  
AIDI HUO ◽  
XIAOFAN WANG ◽  
YUXIANG CHENG ◽  
CHUNLI ZHENG ◽  
CHENG JIANG

Assessing the impacts of climate change on hydrological regime and associated social and economic activities (such as farming) is important for water resources management in any river basin. In this study, we used the popular Soil and Water Assessment Tool (SWAT) to evaluate the impacts of future climate change on the availability of water resources in the Heihe River basin located within Shaanxi Province, China, in terms of runoff and streamflow. The results show that over the next 40 years (starting in 2020 till 2059), changes in the averaged annual runoff ratio are approximately [Formula: see text]11.0%, [Formula: see text]6.4%, 7.2%, and 20.4% for each of the next four consecutive decades as compared to the baseline period (2010–2019). The predicted annual runoff demonstrates an increase trend after a reduction and may result in increased drought and flood risk in the Heihe River basin. To minimize or mitigate these impacts, various adaptation methods have been proposed for the study area, such as stopping irrigation, flood control operation; reasonable development and utilization of regional underground water sources should be implemented in Zhouzhi county and Huyi region in the lower reaches of Heihe River basin.


1981 ◽  
Vol 46 (1) ◽  
pp. 15-30
Author(s):  
Haruhiko Watanabe ◽  
Yoshikazu Nakagawa ◽  
Yoshimi Hagihara

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1203 ◽  
Author(s):  
Ruining Jia ◽  
Xiaohui Jiang ◽  
Xingxing Shang ◽  
Chen Wei

The study of water resource carrying capacity (WRCC) is significant for rational water resource utilization and promotion of the coordinated development of a regional economy, society, and ecology, especially in arid regions. In this paper, using different scenarios, a fuzzy comprehensive evaluation model based on water resource allocation is constructed to obtain the WRCC in the middle reaches of the Heihe River. The results show that the current development of water resources has a certain scale, and the carrying capacity is relatively low. Compared with the current water resource scheme, various scenario schemes have higher evaluation indexes. Among the schemes, scheme 7 is the optimal plan for the recent planning year, and scheme 13 is the best for the long-term planning year. Based on a subsystems analysis, the social subsystem has the highest score, which is followed by the economic subsystem, water resource subsystem, and ecological subsystem, and the evaluation index of the economic subsystem shows the largest increase. The main factors affecting the WRCC are the water-saving level and crop irrigation quota. Therefore, the WRCC should be improved by raising the level of agricultural water use, restricting the irrigation area, and adjusting the local industrial structure.


2014 ◽  
Vol 133 ◽  
pp. 343-354 ◽  
Author(s):  
Laura Read ◽  
Kaveh Madani ◽  
Bahareh Inanloo

Sign in / Sign up

Export Citation Format

Share Document