Polycyclic Aromatic Hydrocarbons (PAHs) in Sediments of the Brisbane River (Australia) – Preliminary Results

1989 ◽  
Vol 21 (2) ◽  
pp. 161-165 ◽  
Author(s):  
S. I. Kayal ◽  
D. W. Connell

Results of the analysis of twenty-three composite sediment samples revealed that PAHs are widely distributed in the Brisbane River estuary. Mean concentrations for individual compounds, on a dry weight basis, ranged from 0.03 µg/g for dibenz [ah] anthracene to 2.34 µg/g for fluoranthene. Observed PAH assemblages were rich in compounds having pyrolytic origins. However, the presence of petroleum derived compounds was indicative of the importance of petroleum as a PAH source in the estuary. Petroleum refineries, a coal loading terminal and a major treated sewage outfall located at the mouth were not indicated as major contributing sources of PAH pollution in the estuary.

2021 ◽  
Author(s):  
Kristen Kieta ◽  
Philip Owens ◽  
Ellen Petticrew

<p>The Nechako River Basin (NRB) in central British Columbia is a large (52,000 km<sup>2</sup>), regulated basin that supports populations of sockeye and chinook salmon and the endangered Nechako white sturgeon. These important species are experiencing population declines and one potential cause of this decline is excess sediment, which can clog their spawning habitat and reduce juvenile success. This excess sediment is likely the product of a combination of factors, the most visible being the significant land cover changes that have occurred in the basin, which includes pressure from forestry and agriculture, the Mountain Pine Beetle epidemic, and large-scale wildfires in 2018. Focusing specifically on the impact of the 2018 wildfires on sediment transport from upland burned areas to adjacent waterways, this research aimed to determine the spatial and temporal contamination of tributaries and the mainstem of the Nechako River with polycyclic aromatic hydrocarbons (PAHs), which are produced during the combustion of organic matter and have been identified as toxic to aquatic organisms and to humans. Additionally, this study intended to determine if burned areas were a more significant contributor of sediment than unburned areas and better understand the utility of PAHs as a potential tracer. Source soil samples were collected in 2018 and 2020 from burned and unburned sites, and suspended sediment samples were collected throughout the ice-free period from 2018-2020 in three tributaries and three mainstem sites. All samples were analysed for PAHs, magnetic susceptibility, colour, and particle size. Results from the fall 2018 source samples show a significant difference in PAH concentrations between unburned and burned soils, and while concentrations of PAHs in source soils in 2020 were lower than in 2018, they were still elevated compared to unburned soils. Sediment samples showed that concentrations of total PAHs are higher in the mainstem sites than in the tributaries, with the greatest concentrations consistently found at the most downstream site on the mainstem of the Nechako River. Concentrations across sites were highest in samples taken during the spring snowmelt period in 2019, have decreased throughout the rest of the sampling period (2019-2020), and are well below sediment quality guidelines for total PAHs. In addition to determining the spatial and temporal extent of PAH contamination, this study also aims to use PAHs along with colour and measurements of magnetic susceptibility to trace sediments associated with the 2018 wildfires. The high cost of PAH analysis limits the number of samples that can be analysed and thus, these additional tracers will allow for the use of models such as MixSIAR that improve with a more robust number of samples. As large-scale megafires continue to burn across the globe, understanding their potential to contribute PAHs to local waterbodies and potentially be used as a tracer is as prescient as ever.</p>


2021 ◽  
Author(s):  
Zhao Wang ◽  
Xiangzi Jin ◽  
Han Yeong Kaw ◽  
Zakia Fatima ◽  
Maurizio Quinto ◽  
...  

Abstract Due to their wide distribution and availability, plant leaves can be considered interesting candidates as biomonitoring substrates for the evaluation of atmospheric pollution. In addition, some species can also retain historical information, for example, related to environmental pollution, due to their leaf class age. In this study, the content of polycyclic aromatic hydrocarbons (PAHs) in Abies holophylla and Pinus tabuliformis needle samples in function of their class age has been investigated to obtain information regarding the degradation constant for each PAH under investigation (α values ranging from 0.173 to 1.870) and to evaluate the possibility to correlate the presence of PAHs in needles with some important pollution environmental factors. Considering air pollutant variables registered in Jilin Province, significant correlations (at 95% confidence level) have been found between coal consumption per year and anthracene contents in needles, while fluorene, phenanthrene, and anthracene resulted correlated with coal consumption. Furthermore, it has been demonstrated that the total PAH concentration in needles, for both species, increased with their age (from 804 to 3604 ng g− 1 dry weight), showing a general tendency to accumulate these substances through years. PAH degradation rates increased instead with molecular complexity. This study could be considered a first trial to obtain historical environmental information by pine needles biomonitoring.


2005 ◽  
Vol 52 (3) ◽  
pp. 111-118 ◽  
Author(s):  
R. Moilleron ◽  
J. Perez ◽  
S. Garnaud

For three years (2001–2003), sediment samples were extracted from about 100 silt traps (STs) spread out all over the combined sewer network of Paris. These STs, whose volume varied from 21 to 325 m3, were cleaned out as soon as their filling capacities were reached. All these sediment samples were analysed for physicochemical parameters (pH, organic matter (OM) content, grain size distribution), total hydrocarbons (THs), 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA, and heavy metals (Al, Ag, As, Cd, Cu, Cr, Sn, Fe, Mn, Hg, Ni, Pb, Zn). For each silt trap, six sediment samples were extracted before the clean out procedure: three samples were extracted from the sediment surface (5–10 cm depth) and three other samples were extracted from a deeper sediment layer (approximately at 1 m depth). The location of these sampling points allowed us to take into account the possible spatial fluctuation of pollutant loads in each ST. The first results showed that there were some important inter-site variations of pollutant contents. These variations have to be taken into account by the sewer manager for the fate of the ST sediments. Therefore, we decided to assess the grain size distribution of some pollutants. OM, heavy metals and PAHs have been investigated on the five grain size fractions (>20 mm, 8–20 mm, 0.5–8 mm, 50–500 μm, <50 μm) for 9 STs, which have been selected on their heavy metal content basis. This work aims at understanding the distribution of the pollutant contents and at improving the knowledge of the ST sediment pollution.


Sign in / Sign up

Export Citation Format

Share Document