Trends in Innovative Treatment Technologies at Contaminated Sites

1992 ◽  
Vol 26 (1-2) ◽  
pp. 99-106 ◽  
Author(s):  
W. W. Kovalick

Increasing the diversity of technologies used to remediate contaminated soils and groundwater is one of the goals of EPA's Office of Solid Waste and Emergency Response (OSWER). While conventional methods of waste remediation, such as stabilization, containment, and incineration, are certainly valid approaches to resolving waste problems, statutory and economic considerations are now, more than ever, encouraging the entire remediation community to consider change in thinking and practice.

Soil Research ◽  
1992 ◽  
Vol 30 (6) ◽  
pp. 937 ◽  
Author(s):  
KG Tiller

The current knowledge of the pollution of Australian urban soils was reviewed with special reference to heavy metals. Increased community concern in recent years has resulted m a major upsurge in the investigation and rehabilitation of contaminated soils. This has led to a concomitant reassessment and development of regulatory procedures, and the establishment of some new environmental agencies. This review considers sources and extent of contamination, and approaches to the establishment of reference background levels in urban and rural areas. Assessment of contaminated sites has been largely based on overseas experience but site specific approaches relevant to Australian soils and climates are needed and are being developed by State authorities in collaboration with the Australian and New Zealand Environmental and Conservation Council and the National Health and Medical Research Council. The need for soil-based research and for standardized soil sampling procedures for site evaluation and action is stressed. Many opportunities exist for soil scientists in solving problems of soil contamination and rehabilitation.


2019 ◽  
Vol 37 ◽  
Author(s):  
M.J. KHAN ◽  
N. AHMED ◽  
W. HASSAN ◽  
T. SABA ◽  
S. KHAN ◽  
...  

ABSTRACT: Phytoremediation is a useful tool to restore heavy metals contaminated soils. This study was carried out to test two castor (Ricinus communis) cultivars [Local and DS-30] for phytoextraction of heavy metals from the soil spiked by known concentrations of seven metals (Cu, Cr, Fe, Mn, Ni, Pb and Zn). A pot experiment was laid out by using a completely randomized design. Soil and plant samples were analyzed at 100 days after planting. The data on heavy metal uptake by plant tissues (roots, leaves and shoots) of the two castor cultivars suggested that a considerable amount of metals (Fe = 27.18 mg L-1; Cu = 5.06 mg L-1; Cr = 2.95 mg L-1; Mn = 0.22 mg L-1; Ni = 4.66 mg L-1; Pb = 3.33 mg L-1; Zn = 15.04 mg L-1) was accumulated in the plant biomass. The soil heavy metal content at the end of experiment significantly decreased with both cultivars, resulting in improved soil quality. Therefore, it is concluded that both castor cultivars, Local and DS-30, can be used for phytoremediation of heavy metal-contaminated sites.


Sign in / Sign up

Export Citation Format

Share Document