Assessing the Risk of Noncompliance in Wastewater Treatment

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1411-1420 ◽  
Author(s):  
S. H. Choudhury ◽  
S. L. Yu ◽  
Y. Y. Haimes

This paper presents an integrated methodology that allows determining the probability of noncompliance for a given wastewater treatment plant. The methodology applies fault-tree analysis, which uses failure probabilities of individual components, to predict the overall system failure probability. The methodology can be divided into two parts : risk identification and risk quantification. In risk identification, the key components in the system are determined by analyzing the contribution of individual component failures toward system failure (i.e., noncompliance). In risk quantification, a fault-tree model is constructed for the particular system, component failure probabilities are estimated, and the fault-tree model is evaluated to determine the probability of occurrence of the top event (i.e., noncompliance). A list can be developed that ranks critical events on the basis of their contributions to the probability of noncompliance. Such a ranking should assist managers to determine which components require most attention for a better performance of the entire system. A wastewater treatment plant for treating metal-bearing rinse water from an electroplating industry is used as an example to demonstrate the application of this methodology.

2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2019 ◽  
Vol 18 (9) ◽  
pp. 2023-2034 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Boguslawa Waliszewska ◽  
Magdalena Zborowska ◽  
Kamil Witaszek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document