Anaerobic treatment of Municipal Solid Waste

1996 ◽  
Vol 33 (3) ◽  
pp. 169-175 ◽  
Author(s):  
G. Plaza ◽  
P. Robredo ◽  
O. Pacheco ◽  
A. Saravia Toledo

This paper discusses the present state of Municipal Solid Waste (MSW) disposal in Argentina, focusing on the particular situation of the city of Salta, and suggests the future trend of the anaerobic treatment of this residue. Source-sorted household solid waste was determined by means of a statistical design. Municipal solid waste produced 147,103 kg per day +/- 6.7%, the major portion corresponds to the biodegradable organic fraction (55.4%). The plastic, metal, paper, glass, and other material production was also evaluated. The organic municipal waste was chemically and biologically characterized, in order to study its behaviour during anaerobic digestion. The ratio normally found in organic fractions from MSW in Salta, Argentina, was in the optimum range which is 126:7:1 (C:N:P, w/w). The stability of the anaerobic process was analized in a 18 liter batch reactor. Its pH, biogas production, alkalinity, and volatile fatty acid production was determined. Although the work has been carried out at a small scale it appears to be sufficiently promising to encourage further work at a larger scale.

2014 ◽  
Vol 70 (10) ◽  
pp. 1625-1632 ◽  
Author(s):  
S. Aydin ◽  
B. Ince ◽  
Z. Cetecioglu ◽  
E. G. Ozbayram ◽  
A. Shahi ◽  
...  

This study evaluates the joint effects of erythromycin–sulfamethoxazole (ES) combinations on anaerobic treatment efficiency and the potential for antibiotic degradation during anaerobic sequencing batch reactor operation. The experiments involved two identical anaerobic sequencing batch reactors. One reactor, as control unit, was fed with synthetic wastewater while the other reactor (ES) was fed with a synthetic substrate mixture including ES antibiotic combinations. The influence of ES antibiotic mixtures on chemical oxygen demand (COD) removal, volatile fatty acid production, antibiotic degradation, biogas production, and composition were investigated. The influent antibiotic concentration was gradually increased over 10 stages, until the metabolic collapse of the reactors, which occurred at 360 days for the ES reactor. The results suggest that substrate/COD utilization and biogas/methane generation affect performance of the anaerobic reactors at higher concentration. In addition, an average of 40% erythromycin and 37% sulfamethoxazole reduction was achieved in the ES reactor. These results indicated that these antibiotics were partly biodegradable in the anaerobic reactor system.


2021 ◽  
Vol 18 (24) ◽  
pp. 1410
Author(s):  
Nisa Pakvilai

The objective of this research was to analyze the potential of biogas production with co-digestion between food waste and cow dung. The experiment research was batched with small scale and scale up with semi-continuous, temperature was operated within 35 - 37 °C. The suitable condition for biogas production between food waste and cow dung was presented with 75:25 (T1). 55 mL of the biogas potential was obtained which is considered as small scale. Thus, the scale up was presented in 75:25 (T1) ratio. In term of scale up the biogas obtained from the production is 650 ml which is higher than small scale. The scale up reactor of biogas production was 100 liters. Chemical oxygen demand (COD) was reduced from 30,000 to 5,000 - 7,000 mL L-1. The efficiency of COD was obtained 76.67 - 83.3 %, respectively. In term of total solid, it was decreased from 19,000 to 16,500 mL L-1. Initial VFA was presented 4,000 mL L-1, and final was presented 3,800 mL L-1, respectively. However, the biogas production from food waste and cow dung can enhance the performance of municipal solid waste and alternative energy production. Finally, the finding of co-digestion in biogas production system suggested utilization in household and communities. HIGHLIGHTS Food waste is the major waste in household, and it has high potential for energy production Co-digestion in biogas production system that suggested utilization in household and communities The biogas production from food waste and cow dung can enhance the performance of municipal solid waste and alternative energy production GRAPHICAL ABSTRACT


2018 ◽  
Vol 77 (10) ◽  
pp. 2426-2435
Author(s):  
D. Di Trapani ◽  
G. Mannina ◽  
S. Nicosia ◽  
G. Viviani

Abstract Municipal solid waste (MSW) landfills now represent one of the most important issues related to the waste management cycle. Knowledge of biogas production is a key aspect for the proper exploitation of this energy source, even in the post-closure period. In the present study, a simple mathematical model was proposed for the simulation of biogas production. The model is based on first-order biodegradation kinetics and also takes into account the temperature variation in time and depth as well as landfill settlement. The model was applied to an operating landfill located in Sicily, in Italy, and the first results obtained are promising. Indeed, the results showed a good fit between measured and simulated data. Based on these promising results, the model can also be considered a useful tool for landfill operators for a reliable estimate of the duration of the post-closure period.


Author(s):  
V. Mozhiarasi ◽  
P. M. Benish Rose ◽  
S. M. Elavaar Kuzhali ◽  
S. Kanyapushpanjali ◽  
D. Weichgrebe ◽  
...  

2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fu-Kuo Huang ◽  
Grace S. Wang ◽  
Yueh-Lin Tsai

A method to assess the reliability for the stability of municipal solid waste (MSW) landfills on slope due to rainfall infiltration is proposed. Parameter studies are first done to explore the influence of factors on the stability of MSW. These factors include rainfall intensity, duration, pattern, and the engineering properties of MSW. Then 100 different combinations of parameters are generated and associated stability analyses of MSW on slope are performed assuming that each parameter is uniform distributed around its reason ranges. In the following, the performance of the stability of MSW is interpreted by the artificial neural network (ANN) trained and verified based on the aforementioned 100 analysis results. The reliability for the stability of MSW landfills on slope is then evaluated and explored for different rainfall parameters by the ANN model with first-order reliability method (FORM) and Monte Carlo simulation (MCS).


Sign in / Sign up

Export Citation Format

Share Document