Performance of anaerobic sequencing batch reactor in the treatment of pharmaceutical wastewater containing erythromycin and sulfamethoxazole mixture

2014 ◽  
Vol 70 (10) ◽  
pp. 1625-1632 ◽  
Author(s):  
S. Aydin ◽  
B. Ince ◽  
Z. Cetecioglu ◽  
E. G. Ozbayram ◽  
A. Shahi ◽  
...  

This study evaluates the joint effects of erythromycin–sulfamethoxazole (ES) combinations on anaerobic treatment efficiency and the potential for antibiotic degradation during anaerobic sequencing batch reactor operation. The experiments involved two identical anaerobic sequencing batch reactors. One reactor, as control unit, was fed with synthetic wastewater while the other reactor (ES) was fed with a synthetic substrate mixture including ES antibiotic combinations. The influence of ES antibiotic mixtures on chemical oxygen demand (COD) removal, volatile fatty acid production, antibiotic degradation, biogas production, and composition were investigated. The influent antibiotic concentration was gradually increased over 10 stages, until the metabolic collapse of the reactors, which occurred at 360 days for the ES reactor. The results suggest that substrate/COD utilization and biogas/methane generation affect performance of the anaerobic reactors at higher concentration. In addition, an average of 40% erythromycin and 37% sulfamethoxazole reduction was achieved in the ES reactor. These results indicated that these antibiotics were partly biodegradable in the anaerobic reactor system.

2015 ◽  
Vol 71 (11) ◽  
pp. 1620-1628 ◽  
Author(s):  
Sevcan Aydın ◽  
Bahar Ince ◽  
Orhan Ince

Pharmaceuticals enter ecosystems, which causes changes to microbial community structure and development of resistant genes. Anaerobic treatments can be an alternative application for treatment of pharmaceutical wastewaters, which has high organic content. This study aims to develop an understanding of the effects of sulfamethoxazole–erythromycin–tetracycline (ETS), sulfamethoxazole–tetracycline (ST), erythromycin–sulfamethoxazole (ES) and erythromycin–tetracycline (ET) combinations on the anaerobic treatment of pharmaceutical industry wastewater. The results of this investigation revealed that bacteria have a competitive advantage over archaea under all antibiotic combinations. The ET reactor showed a better performance compared to other reactors; this could be due to antagonistic effects of sulfamethoxazole. Acute inhibition in the microbial community was also strongly affected by antibiotics concentrations. This indicated that the composition of the microbial community changed in association with anaerobic sequencing batch reactor performances. The results of this research support the idea that an acute test could be used to control and improve the anaerobic treatment system.


2018 ◽  
Vol 77 (6) ◽  
pp. 1581-1590 ◽  
Author(s):  
L. Pelaz ◽  
A. Gómez ◽  
A. Letona ◽  
G. Garralón ◽  
M. Fdz-Polanco

Abstract This work presents the performance of a sequencing batch reactor (SBR) system used as a means of removing nitrogen from domestic wastewater containing a low chemical oxygen demand (COD) to nitrogen ratio due to pre-treatment with an anaerobic reactor. The aim of the work was to determine the feasibility of this system for the removal of nitrogen from the domestic wastewater. An SBR with a working volume of 5 L was investigated at different cycle times of 12, 8 and 6 h, at 18 °C. The efficiency of the SBR varied together with the duration of the cycle, where the optimum performance was seen in the 6 h cycle with the anoxic–aerobic–anoxic sequence. Due to the low quantity of organic matter present in the domestic wastewater after the anaerobic treatment, an additional supply of external carbon was necessary before the second anoxic stage. The removal efficiencies obtained were: 98% for total Kjeldahl nitrogen, 84% for total nitrogen and 77% for soluble COD. The reactor was thus shown to be viable, and it was concluded that this process may be successfully applied as a post-treatment for the removal of nitrogen from anaerobically treated domestic wastewater.


2017 ◽  
Vol 76 (5) ◽  
pp. 1044-1058 ◽  
Author(s):  
Amir Mohammad Mansouri ◽  
Ali Akbar Zinatizadeh

The performance of two bench scale activated sludge reactors with two feeding regimes, continuous fed (an up-flow aerobic/anoxic sludge fixed film (UAASFF) bioreactor) and batch fed (sequencing batch reactor (SBR)) with intermittent aeration, were evaluated for simultaneous nutrients (N, P) removal. Three significant variables (retention/reaction time, chemical oxygen demand (COD): N (nitrogen): P (phosphorus) ratio and aeration time) were selected for modeling, analyzing, and optimizing the process. At high retention time (≥6 h), two bioreactors showed comparable removal efficiencies, but at lower hydraulic retention time, the UAASFF bioreactor showed a better performance with higher nutrient removal efficiency than the SBR. The experimental results indicated that the total Kjeldahl nitrogen removal efficiency in the UAASFF increased from 70.84% to 79.2% when compared to SBR. It was also found that the COD removal efficiencies of both processes were over 87%, and total nitrogen and total phosphorus removal efficiencies were 79.2% and 72.98% in UAASFF, and 71.2% and 68.9% in SBR, respectively.


2013 ◽  
Vol 67 (5) ◽  
pp. 1068-1074 ◽  
Author(s):  
Elena Cristina Rada ◽  
Marco Ragazzi ◽  
Vincenzo Torretta

This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8–9 gCOD L−1 and 0.9 gCOD g−1 volatile solids.


2013 ◽  
Vol 39 (2) ◽  
pp. 69-80 ◽  
Author(s):  
Chandrakant Thakur ◽  
Indra Deo Mall ◽  
Vimal Chandra Srivastava

Abstract In the present study, treatment of synthetic wastewater containing phenol, resorcinol and catechol was studied in a sequencing batch reactor (SBR). Parameters such as hydraulic retention time (HRT) and filling time have been optimized to increase the phenol, resorcinol, catechol and chemical oxygen demand (COD) removal efficiencies. More than 99% phenol, 95% resorcinol and 96% catechol and 89% COD removal efficiency was obtained at optimum conditions of HRT = 1.25 d and fill time = 1.5 h. The heating value of the sludge was found to be 12 MJ/kg. The sludge can be combusted to recover its energy value.


1996 ◽  
Vol 33 (3) ◽  
pp. 169-175 ◽  
Author(s):  
G. Plaza ◽  
P. Robredo ◽  
O. Pacheco ◽  
A. Saravia Toledo

This paper discusses the present state of Municipal Solid Waste (MSW) disposal in Argentina, focusing on the particular situation of the city of Salta, and suggests the future trend of the anaerobic treatment of this residue. Source-sorted household solid waste was determined by means of a statistical design. Municipal solid waste produced 147,103 kg per day +/- 6.7%, the major portion corresponds to the biodegradable organic fraction (55.4%). The plastic, metal, paper, glass, and other material production was also evaluated. The organic municipal waste was chemically and biologically characterized, in order to study its behaviour during anaerobic digestion. The ratio normally found in organic fractions from MSW in Salta, Argentina, was in the optimum range which is 126:7:1 (C:N:P, w/w). The stability of the anaerobic process was analized in a 18 liter batch reactor. Its pH, biogas production, alkalinity, and volatile fatty acid production was determined. Although the work has been carried out at a small scale it appears to be sufficiently promising to encourage further work at a larger scale.


2008 ◽  
Vol 57 (11) ◽  
pp. 1699-1704 ◽  
Author(s):  
T. Shimada ◽  
J. L. Zilles ◽  
E. Morgenroth ◽  
L. Raskin

A laboratory-scale anaerobic sequencing batch reactor (ASBR) was fed a synthetic wastewater containing glucose to study the effects of the antimicrobial tylosin on treatment performance. Measurements of methane, volatile fatty acids, and COD concentrations suggested that the addition of 1.67 mg/L and 167 mg/l of tylosin to the synthetic wastewater inhibited propionate oxidizing syntrophic bacteria and aceticlastic methanogens. The latter is presumed to be an indirect effect. A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for microbial storage and hydrolysis of reserve carbohydrates, and tylosin liquid–solid mass transfer and inhibition adequately described the dynamic profiles observed in the ASBR.


Sign in / Sign up

Export Citation Format

Share Document