Activated sludge process control via particle monitoring

1997 ◽  
Vol 36 (4) ◽  
pp. 269-277 ◽  
Author(s):  
Ashifa Jiwani ◽  
Nigel J. D. Graham ◽  
Martin C. Day

The interrelationships between activated sludge plant operation and floc characteristics were examined in order to determine process control mechanisms for the effective treatment of domestic wastewaters and surplus activated sludge. A quantitative indicator of the physiological floc characteristics was developed and termed the morphological index. This may be evaluated by plant operators using a simple assessment form and matching photographic guide of various floc structures. The morphological index and floc size distribution were found to be useful tools for activated sludge process control and monitoring the dewaterability of surplus activated sludge. It was found that floc size, morphology and in turn the dewaterability of surplus activated sludge varied with different operating conditions. Hydraulic retention times (HRTs) of < 10 hours and sludge ages of ≤8 days, resulted in the presence of small diffuse floc structures in the mixed liquor. The effluent quality was poor and the activated sludge had unfavourable filtering and dewatering properties. Switching plant operation to sludge ages in the region of ≥8 days and HRTs of ≥10 hours, was found to improve effluent quality and the dewaterability of surplus activated sludge. Here the flocs were large compact structures with short filaments protruding from the floc body.

1998 ◽  
Vol 38 (4-5) ◽  
pp. 9-17 ◽  
Author(s):  
F. Germirli Babuna ◽  
D. Orhon ◽  
E. Ubay Çokgör ◽  
G. Insel ◽  
B. Yaprakli

A comprehensive evaluation of four different textile wastewaters was carried out to set the experimental basis for the modelling of activated sludge process. Experiments involved beside conventional characterization, detailed COD fractionation and assessment of major kinetic and stoichiometric coefficients by means of respirometric measurements. A multi-component model based on the endogenous decay concept was used for the kinetic interpretation and design of activated sludge. The fate and variation of major process components affecting effluent quality with the sludge age were evaluated by means of model simulations.


2004 ◽  
Vol 2004 (11) ◽  
pp. 377-394
Author(s):  
Edmund Kobylinski ◽  
Andrew Shaw ◽  
Mark Steichen ◽  
Howard Analla

2002 ◽  
Vol 46 (9) ◽  
pp. 229-236 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
H. Satoh ◽  
T. Mino

A coarse pore filter can be applied inside the aeration tank instead of sedimentation tank for liquid separation from the sludge. It has pores, which are irregular in shape, and much bigger than micro-filtration membrane pores in size. The objective of the study was to investigate the effect of important operational parameters such as flux, aeration intensity, and solid retention time (SRT) on the performance of the coarse pore filtration activated sludge process. The effect of these parameters was studied in laboratory scale experiments. It was found that the flux had a significant role in the effluent quality of this system. The effluent SS and turbidity were not changed significantly at different aeration intensities. Three SRTs, 10, 30 and longer days (without excess sludge) were used for three reactors to check the effect of this parameter on the system performance. The results of the reactors with SRTs about 10 and 30 days have shown very good effluent quality without any filter clogging for more than 4 months operation. For the reactor with long SRT, the filter clogging was observed after about 80 days of operation, which caused the increase of the operation pressure and deterioration in the effluent quality for a few days.


1995 ◽  
Vol 29 (7) ◽  
pp. 1703-1710 ◽  
Author(s):  
Krzysztof Barbusiński ◽  
Helena Kościelniak

2011 ◽  
Vol 2011 (10) ◽  
pp. 5405-5421
Author(s):  
Ronald G. Schuyler ◽  
Joseph R. Tamburini ◽  
Steven J. Tamburini

2016 ◽  
Vol 6 (02) ◽  
Author(s):  
Andri Taufick Rizaluddin ◽  
Sri Purwati

As the effluent quality standards for industrial wastewater are becoming more stringent, it is important for the industry to improve their wastewater treatment efficiency. The research about potential of cellulase application in the activated sludge process has been done. Theoritically, the addition of cellulase was required to support the activity of microorganism on the activated sludge. Since cellulose is the major organic pollutant component in the wastewater, it was expected that cellulase addition could improve the performance of activated sludge process. The experiments were conducted in a continuous process and consisted of two treatments which were with and without activated sludge at about 2400 mg MLVSS/L. The variations in each treatment were the enzyme dosages of 0; 0.2; 0.5; and 0.7 unit/g COD, and the residence time of 4, 8, 12, and 24 hours. The experiment result showed that the addition of cellulase can increase COD and BOD reduction compared to the treatment without enzymes. The highest COD reduction increment was 7.9% at the enzyme dosage of 0.2 unit/g COD and the residence time of 4 hours, while the highest BOD reduction increment was 14.6% at the same enzyme dosage and residence time. In conclusion, celullase application can be combined with the activated sludge process which will be effective in the high load organic wastewater. ABSTRAKDengan semakin ketatnya baku mutu air limbah, peningkatan efisiensi dalam pengolahan limbah menjadi sangat penting bagi industri. Penelitian ini dilakukan untuk mengetahui potensi selulase dan pengaruh laju pembebanan pada efektifitas pengolahan air limbah kertas sistem lumpur aktif. Secara teori, penambahan selulase diperlukan untuk membantu aktivitas mikroorganisme lumpur aktif. Dengan adanya kandungan selulosa sebagai komponen utama pencemar organik dalam air limbah, penambahan selulase diharapkan dapat meningkatkan kinerja proses lumpur aktif. Percobaan dilakukan dengan proses kontinyu yang terdiri dari dua perlakuan, yaitu tanpa dan dengan lumpur aktif pada MLVSS sekitar 2400 mg/L. Variasi pada setiap perlakuan berupa variasi dosis selulase (0; 0,2; 0,5; dan 0,7 unit/g COD) dan variasi laju pembebanan dengan mengatur waktu tinggal 4, 8, 12, dan 24 jam. Hasil percobaan menunjukkan bahwa perlakuan lumpur aktif dengan penambahan selulase dapat menghasilkan peningkatan reduksi COD dan BOD bila dibandingkan perlakuan tanpa menggunakan selulase. Peningkatan reduksi COD tertinggi mencapai 7,9% dengan perlakuan selulase dosis 0,2 unit/g COD dan waktu tinggal 4 jam, sedangkan peningkatan reduksi BOD tertinggi mencapai 14,6%. Perlakuan selulase dapat dikombinasikan dengan proses lumpur aktif yang berjalan efektif pada waktu tinggal yang lebih singkat atau pada beban tinggi.Kata kunci: selulase, lumpur aktif, chemical oxygen demand, biological oxygen demand


2020 ◽  
Vol 12 (19) ◽  
pp. 8182
Author(s):  
Nuhu Dalhat Mu’azu ◽  
Omar Alagha ◽  
Ismail Anil

Mathematical modeling has become an indispensable tool for sustainable wastewater management, especially for the simulation of complex biochemical processes involved in the activated sludge process (ASP), which requires a substantial amount of data related to wastewater and sludge characteristics as well as process kinetics and stoichiometry. In this study, a systematic approach for calibration of the activated sludge model one (ASM1) model for a real municipal wastewater ASP was undertaken in GPS-X. The developed model was successfully validated while meeting the assumption of the model’s constant stoichiometry and kinetic coefficients for any plant influent compositions. The influences of vital ASP parameters on the treatment plant performance and capacity analysis for meeting local discharge limits were also investigated. Lower influent chemical oxygen demand in mgO2/L (COD) could inhibit effective nitrification and denitrification, while beyond 250 mgO2/L, there is a tendency for effluent quality to breach the regulatory limit. The plant performance can be satisfactory for handling even higher influent volumes up to 60,000 m3/d and organic loading when Total Suspended Solids/Volatile Suspended Solids (VSS/TSS) and particulate COD (XCOD)/VSS are maintained above 0.7 and 1, respectively. The wasted activated sludge (WAS) has more impact on the effluent quality compared to recycle activated sludge (RAS) with significant performance improvement when the WAS was increased from 3000 to 9000 m3/d. Hydraulic retention time (HRT) > 6 h and solids retention time (SRT) < 7 days resulted in better plant performance with the SRT having greater impact compared with HRT. The plant performance could be sustained for a quite appreciable range of COD/5-day Biochemical Oxygen Demand (BOD5 in mgO2/L) ratio, Mixed Liquor Suspended Solid (MLSS) of up to 6000 mg/L, and when BOD5/total nitrogen (TN) and COD/TN are comparatively at higher values. This work demonstrated a systematic approach for estimation of the wastewater treatment plant (WWTP) ASP parameters and the high modeling capabilities of ASM1 in GPS-X when respirometry tests data are lacking.


1987 ◽  
Vol 19 (7) ◽  
pp. 1207-1210 ◽  
Author(s):  
G. d'Antonio ◽  
P. Carbone

The mathematical models of activated sludge kinetics and solids flux have been investigated; the constants have been derived experimentally. By developing the equations of the two models, an operational chart for activated sludge process control has been plotted.


Sign in / Sign up

Export Citation Format

Share Document