scholarly journals Systematic Modeling of Municipal Wastewater Activated Sludge Process and Treatment Plant Capacity Analysis Using GPS-X

2020 ◽  
Vol 12 (19) ◽  
pp. 8182
Author(s):  
Nuhu Dalhat Mu’azu ◽  
Omar Alagha ◽  
Ismail Anil

Mathematical modeling has become an indispensable tool for sustainable wastewater management, especially for the simulation of complex biochemical processes involved in the activated sludge process (ASP), which requires a substantial amount of data related to wastewater and sludge characteristics as well as process kinetics and stoichiometry. In this study, a systematic approach for calibration of the activated sludge model one (ASM1) model for a real municipal wastewater ASP was undertaken in GPS-X. The developed model was successfully validated while meeting the assumption of the model’s constant stoichiometry and kinetic coefficients for any plant influent compositions. The influences of vital ASP parameters on the treatment plant performance and capacity analysis for meeting local discharge limits were also investigated. Lower influent chemical oxygen demand in mgO2/L (COD) could inhibit effective nitrification and denitrification, while beyond 250 mgO2/L, there is a tendency for effluent quality to breach the regulatory limit. The plant performance can be satisfactory for handling even higher influent volumes up to 60,000 m3/d and organic loading when Total Suspended Solids/Volatile Suspended Solids (VSS/TSS) and particulate COD (XCOD)/VSS are maintained above 0.7 and 1, respectively. The wasted activated sludge (WAS) has more impact on the effluent quality compared to recycle activated sludge (RAS) with significant performance improvement when the WAS was increased from 3000 to 9000 m3/d. Hydraulic retention time (HRT) > 6 h and solids retention time (SRT) < 7 days resulted in better plant performance with the SRT having greater impact compared with HRT. The plant performance could be sustained for a quite appreciable range of COD/5-day Biochemical Oxygen Demand (BOD5 in mgO2/L) ratio, Mixed Liquor Suspended Solid (MLSS) of up to 6000 mg/L, and when BOD5/total nitrogen (TN) and COD/TN are comparatively at higher values. This work demonstrated a systematic approach for estimation of the wastewater treatment plant (WWTP) ASP parameters and the high modeling capabilities of ASM1 in GPS-X when respirometry tests data are lacking.

2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2018 ◽  
Vol 78 (3) ◽  
pp. 644-654 ◽  
Author(s):  
J. Olsson ◽  
S. Schwede ◽  
E. Nehrenheim ◽  
E. Thorin

Abstract A mix of microalgae and bacteria was cultivated on pre-sedimented municipal wastewater in a continuous operated microalgae-activated sludge process. The excess material from the process was co-digested with primary sludge in mesophilic and thermophilic conditions in semi-continuous mode (5 L digesters). Two reference digesters (5 L digesters) fed with waste-activated sludge (WAS) and primary sludge were operated in parallel. The methane yield was slightly reduced (≈10%) when the microalgal-bacterial substrate was used in place of the WAS in thermophilic conditions, but remained approximately similar in mesophilic conditions. The uptake of heavy metals was higher with the microalgal-bacterial substrate in comparison to the WAS, which resulted in higher levels of heavy metals in the digestates. The addition of microalgal-bacterial substrate enhanced the dewaterability in thermophilic conditions. Finally, excess heat can be recovered in both mesophilic and thermophilic conditions.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
B Vivekanandan ◽  
K Jeyannathann ◽  
A. Seshagiri Rao

Abstract The quality of a treated effluent changes when there is a sudden variation in the influent flow to the wastewater treatment plant during dry, rain, and storm weather conditions. In this study, various influent flow conditions in an activated sludge process are considered that affect the sensitivity of effluent variables such as chemical oxygen demand (COD), biological oxygen demand (BOD), nitrate nitrogen (SNO), ammonical nitrogen (SNH), and total nitrogen (TN) with respect to varying internal recycle flow rate (Qa), sludge recycle flow rate (Qr), sludge wastage flow rate (Qw) and oxygen transfer rate co-efficient of aerobic tanks (KLa(3,4,5)). The analysis has been carried out based on benchmark simulation model no.1 (BSM 1) plant layout which comprises of two models namely activated sludge model no.1 (ASM 1) and simple one dimensional (Simple 1-D) Takacs model. Based on the present analysis, it is observed that the changes in influent flow rate have larger impact on the effluent variables. This variation can be subdued by introducing additional tanks to smoothen the perturbations or using internal recycle rate from the fifth tank in order to maintain the flow around the optimal influent flow rate. The sludge wastage rate has a greater impact on all effluent variables except nitrogenous variables during maximum flow conditions.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 143-152 ◽  
Author(s):  
M. Tendaj-Xavier ◽  
J. Hultgren

Bromma sewage treatment plant is the second largest plant in Stockholm with a design flow of 160,000 m3/d. The wastewater is treated mechanically, chemically by pre-precipitation with ferrous sulphate, and biologically by the activated sludge process. The requirements for the plant are 8 mg BOD7/l, 0.4 mg P/l and 2 mg NH4+-N/l. The requirement for ammonia refers to the period July-October. In order to meet those rather stringent requirements, the biological step was expanded 3 years ago with 6 new sedimentation tanks. The 6 new tanks have the same area as the 6 old ones but they have only a depth of 3.7 m compared with the depth of the old tanks, 5.7 m. Experience from the first years of operation of the new tanks is that these tanks are more sensitive and less efficient than the older ones. It seems that the effluent suspended solids concentration from the old tanks is less influenced by rapid flow variations than the concentration in the effluent from the new secondary sedimentation tanks. During the nitrification period denitrification takes place to some degree in the secondary sedimentation tanks. This may cause loss of solids and it has been observed that the deeper old tanks usually produce an effluent of better quality and seem to be less influenced by denitrification than the new ones.


2013 ◽  
Vol 807-809 ◽  
pp. 694-698
Author(s):  
Rong Xin Huang ◽  
Zhen Xing Wang ◽  
Gang Liu ◽  
Qi Jin Luo

In order to guarantee the reliability and security of reclaiming water, research on the removal efficiency of the environmental endocrine chemicals (EDCs) --the Phthalate Esters (PAEs) in conventional secondary activated sludge and wastewater reclamation and reuse process was undergoing at Harbin wastewater treatment plant (WWTP). The wastewater samples were colleted from every unit effluent of WWTP. The results showed that contamination of EDCs were presented in municipal wastewater at Harbin and the concentrations of the four PAEs were 21.01μg/L for Di-n-butyl Phthalate (DBP); 9.63μg/L for Di-n-octyl Phthalate (DnOP); 4.56μg/L for Diethyl Phthalate (DEP); 1.96μg/L for Dimethyl Phthalate (DMP) respectively in the influent. The conventional activated sludge has good removal efficiencies performance on DMP, DEP and DBP. With the increasing of molecular weight and branch chains of PAEs contaminations, the removal rate of the four PAEs in the conventional activated sludge process decreased from 99.82%(DMP),90.60%(DEP),90.10%(DBP) to the only 45.13% removal rate for DnOP, which was mostly removed from primary treatment but no from secondary activated sludge process; Coagulation-air flotation plus filtration process was not a feasible way to remove PAEs from reclaiming treatment units.


2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


2008 ◽  
Vol 58 (4) ◽  
pp. 953-956 ◽  
Author(s):  
L. Balest ◽  
G. Mascolo ◽  
C. Di Iaconi ◽  
A. Lopez

The removal of selected endocrine disrupter compounds (EDCs), namely estrone(E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol A (BPA) and 4-tert-octylphenol (4t-OP) from municipal wastewater was investigated using a sequencing batch biofilter granular reactor (SBBGR), a new system for biological treatment based on aerobic granular biomass. This new biological treatment is characterized by high biomass concentration (up to 40 g/L), high sludge retention times (up to 6 months) and low sludge production (i.e., an order of magnitude lower than commonly reported for conventional biological technologies). The investigation was carried out comparing a demonstration SBBGR system with a conventional full-scale activated sludge process. Results showed that the SBBGR performed better than a conventional activated sludge process in removing E1, E2, BPA and 4t-OP. In fact, the average removal percentages of the above mentioned EDCs, obtained during a four month operating period, were 62.2, 68, 91.8, 77.9% and 56.4, 36.3, 71.3, 64.6% for the demonstrative SBBGR system and the conventional activated sludge process of the municipal sewage treatment plant, respectively


2016 ◽  
Vol 6 (02) ◽  
Author(s):  
Andri Taufick Rizaluddin ◽  
Sri Purwati

As the effluent quality standards for industrial wastewater are becoming more stringent, it is important for the industry to improve their wastewater treatment efficiency. The research about potential of cellulase application in the activated sludge process has been done. Theoritically, the addition of cellulase was required to support the activity of microorganism on the activated sludge. Since cellulose is the major organic pollutant component in the wastewater, it was expected that cellulase addition could improve the performance of activated sludge process. The experiments were conducted in a continuous process and consisted of two treatments which were with and without activated sludge at about 2400 mg MLVSS/L. The variations in each treatment were the enzyme dosages of 0; 0.2; 0.5; and 0.7 unit/g COD, and the residence time of 4, 8, 12, and 24 hours. The experiment result showed that the addition of cellulase can increase COD and BOD reduction compared to the treatment without enzymes. The highest COD reduction increment was 7.9% at the enzyme dosage of 0.2 unit/g COD and the residence time of 4 hours, while the highest BOD reduction increment was 14.6% at the same enzyme dosage and residence time. In conclusion, celullase application can be combined with the activated sludge process which will be effective in the high load organic wastewater. ABSTRAKDengan semakin ketatnya baku mutu air limbah, peningkatan efisiensi dalam pengolahan limbah menjadi sangat penting bagi industri. Penelitian ini dilakukan untuk mengetahui potensi selulase dan pengaruh laju pembebanan pada efektifitas pengolahan air limbah kertas sistem lumpur aktif. Secara teori, penambahan selulase diperlukan untuk membantu aktivitas mikroorganisme lumpur aktif. Dengan adanya kandungan selulosa sebagai komponen utama pencemar organik dalam air limbah, penambahan selulase diharapkan dapat meningkatkan kinerja proses lumpur aktif. Percobaan dilakukan dengan proses kontinyu yang terdiri dari dua perlakuan, yaitu tanpa dan dengan lumpur aktif pada MLVSS sekitar 2400 mg/L. Variasi pada setiap perlakuan berupa variasi dosis selulase (0; 0,2; 0,5; dan 0,7 unit/g COD) dan variasi laju pembebanan dengan mengatur waktu tinggal 4, 8, 12, dan 24 jam. Hasil percobaan menunjukkan bahwa perlakuan lumpur aktif dengan penambahan selulase dapat menghasilkan peningkatan reduksi COD dan BOD bila dibandingkan perlakuan tanpa menggunakan selulase. Peningkatan reduksi COD tertinggi mencapai 7,9% dengan perlakuan selulase dosis 0,2 unit/g COD dan waktu tinggal 4 jam, sedangkan peningkatan reduksi BOD tertinggi mencapai 14,6%. Perlakuan selulase dapat dikombinasikan dengan proses lumpur aktif yang berjalan efektif pada waktu tinggal yang lebih singkat atau pada beban tinggi.Kata kunci: selulase, lumpur aktif, chemical oxygen demand, biological oxygen demand


1973 ◽  
Vol 8 (1) ◽  
pp. 122-147
Author(s):  
J. D. O’Blenis ◽  
T.R. Warriner

Abstract The current widespread practice of disposal of water filtration plant wastes by direct discharge to receiving waters is coming under critical review by regulatory agencies. Among the alternatives for management of these wastes is the possibility of disposal to sanitary sewer systems. Since a recent nation-wide survey had established alum sludge as the most common waste generated by filtration plants, research was initiated to study the effects of water plant alum sludge on primary sewage treatment. A pilot primary sewage treatment plant was constructed and operated with a raw sewage feed of five litres per minute. A laboratory jar test program was conducted to supplement pilot plant operation. Sludges from two different water purification plants were tested along with alum and combinations of alum and water purification plant sludge for their effects on the removal of suspended solids, chemical oxygen demand (COD) and phosphates. The data showed jar testing to be a good indicator of pilot plant performance. Suspended solids, COD and phosphate removal efficiencies were improved by the addition of the sludges. The phosphate removal capacity of water treatment plant alum sludge was approximately the same as that reported for aluminum hydroxide, or about 1/7 to 1/9 of that determined for alum (as Aluminum). Recycling of the sludges improved phosphate removal performance.


Sign in / Sign up

Export Citation Format

Share Document