Post denitrification in a moving bed biofilm reactor process

1998 ◽  
Vol 38 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Henrik Aspegren ◽  
Ulf Nyberg ◽  
Bengt Andersson ◽  
Sören Gotthardsson ◽  
Jes la Cour Jansen

The Sjölunda wastewater treatment plant in Malmö Sweden will have to comply with future effluent standards of less than 10 mg BOD7/l, 8 mg N/l and 0.3 mg P/l. The upgrading for enhanced nutrient removal will be based on a site-specific concept where a tertiary treatment step for post-denitrification will be required. An interesting process in this respect is the moving bed biofilm reactor (MBBR). The number of practical experiences with this type of process is however still limited. In this paper the results from a pilot plant test are presented. The primary aim of the experiment was to demonstrate the MBBR process as part of an overall concept for nutrient removal at the Sjölunda WWTP. Two different carbon sources, ethanol and methanol were tested. In addition the effect of low phosphate concentrations on the process performance was investigated.

2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


1993 ◽  
Vol 28 (10) ◽  
pp. 351-359 ◽  
Author(s):  
H. Ødegaard ◽  
B. Rusten ◽  
H. Badin

In 1988 the State Pollution Control Authority in Norway made recommendations regarding process designs for small wastewater treatment plants. Amongst these were recommendations for biological/chemical plants where biofilm reactors were used in combination with pretreatment in large septic tanks and chemical post treatment. At the same time the socalled “moving bed biofilm reactor” (MBBR) was developed by a Norwegian company. In this paper, experiences from a small wastewater treatment plant, based on the MBBR and on the recommendations mentioned, will be presented.


2019 ◽  
Vol 7 (1) ◽  
pp. 102861 ◽  
Author(s):  
Elham Ashrafi ◽  
Arjomand Mehrabani Zeinabad ◽  
Seyed Mehdi Borghei ◽  
Elena Torresi ◽  
Julian Muñoz Sierra

2014 ◽  
Vol 2 (3) ◽  
pp. 33-42
Author(s):  
Mehdi Ahmadi ◽  
Aliakbar Mehr alian ◽  
Hoda Amiri ◽  
Bahman Ramavandi ◽  
Hassan Izanloo ◽  
...  

2020 ◽  
Vol 58 (3A) ◽  
pp. 211
Author(s):  
Quan Truong Nguyen ◽  
Quan Truong Nguyen ◽  
Ha Thi Nguyen

The objective of this study is to investigate the performance of Anaerobic Moving Bed Biofilm Reactor (MBBR) on the removal of organic matters (using COD and TSS values) in piggery wastewater using two kinds of carrier: Polyurethane (PU) and Polyethylene (PE) - Different organic loading rates (OLRs) varying from 4 to 10 gCOD/l/day with controlled temperature 37±2oC, pH 7.0-7.5 were investigated. The seeded sludge was collected at the anaerobic tank of the wastewater treatment plant of the Sabeco Beer Manufacturing Plant (Nam Tu Liem district, Hanoi) and grown in the MBBR for 15 days. For porous PU material, the COD and TSS removal efficiencies achieved 69.7 and 67.3% and 54.9 and 65.5% at OLR 4 and 6 gCOD/l/day, respectively.  Whereas for wheel shape PE material, it was found that the COD removal efficiencies were slightly higher with OLR of 6  gCOD/l/day (71%%), even with higher OLR at 10 gCOD/l.day, the COD removal efficiency didn‘t seem to significantly increase (73.3 %). For TSS removal, in comparison between PU and PE, the later found slightly better with the same OLRs of 4 and 6 gCOD/l/day, reaching 63.2 and 67 %, respectively. However, TSS removal efficiencies were found to be higher with PE carrier at higher OLR, reaching 72% at 10 gCOD/l/day.


Sign in / Sign up

Export Citation Format

Share Document