scholarly journals REMOVAL OF ORGANIC MATTERS FROM PIGGERY WASTEWATER IN ANAEROBIC MOVING BED BIOFILM REACTOR (MBBR)

2020 ◽  
Vol 58 (3A) ◽  
pp. 211
Author(s):  
Quan Truong Nguyen ◽  
Quan Truong Nguyen ◽  
Ha Thi Nguyen

The objective of this study is to investigate the performance of Anaerobic Moving Bed Biofilm Reactor (MBBR) on the removal of organic matters (using COD and TSS values) in piggery wastewater using two kinds of carrier: Polyurethane (PU) and Polyethylene (PE) - Different organic loading rates (OLRs) varying from 4 to 10 gCOD/l/day with controlled temperature 37±2oC, pH 7.0-7.5 were investigated. The seeded sludge was collected at the anaerobic tank of the wastewater treatment plant of the Sabeco Beer Manufacturing Plant (Nam Tu Liem district, Hanoi) and grown in the MBBR for 15 days. For porous PU material, the COD and TSS removal efficiencies achieved 69.7 and 67.3% and 54.9 and 65.5% at OLR 4 and 6 gCOD/l/day, respectively.  Whereas for wheel shape PE material, it was found that the COD removal efficiencies were slightly higher with OLR of 6  gCOD/l/day (71%%), even with higher OLR at 10 gCOD/l.day, the COD removal efficiency didn‘t seem to significantly increase (73.3 %). For TSS removal, in comparison between PU and PE, the later found slightly better with the same OLRs of 4 and 6 gCOD/l/day, reaching 63.2 and 67 %, respectively. However, TSS removal efficiencies were found to be higher with PE carrier at higher OLR, reaching 72% at 10 gCOD/l/day.

2005 ◽  
Vol 51 (6-7) ◽  
pp. 421-430 ◽  
Author(s):  
E. Melin ◽  
T. Leiknes ◽  
H. Helness ◽  
V. Rasmussen ◽  
H. Ødegaard

The effect of moving bed biofilm reactor (MBBR) loading rate on membrane fouling rate was studied in two parallel units combining MBBR and membrane reactor. Hollow fiber membranes with molecular weight cut-off of 30 kD were used. The HRTs of the MBBRs varied from 45 min to 4 h and the COD loading rates ranged from 4.1 to 26.6 g COD m−2 d−1. The trans-membrane pressure (TMP) was very sensitive to fluxes for the used membranes and the experiments were carried out at relatively low fluxes (3.3–5.6 l m−2 h−1). Beside the test with the highest flux, there were no consistent differences in fouling rate between the low- and high-rate reactors. Also, the removal efficiencies were quite similar in both systems. The average COD removal efficiencies in the total process were 87% at 3–4 h HRT and 83% at 0.75–1 h HRT. At high loading rates, there was a shift in particle size distribution towards smaller particles in the MBBR effluents. However, 79–81% of the COD was in particles that were separated by membranes, explaining the relatively small differences in the removal efficiencies at different loading rates. The COD fractionation also indicated that the choice of membrane pore size within the range of 30 kD to 0.1 μm has very small effect on the COD removal in the MBBR/membrane process, especially with low-rate MBBRs.


2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


1993 ◽  
Vol 28 (10) ◽  
pp. 351-359 ◽  
Author(s):  
H. Ødegaard ◽  
B. Rusten ◽  
H. Badin

In 1988 the State Pollution Control Authority in Norway made recommendations regarding process designs for small wastewater treatment plants. Amongst these were recommendations for biological/chemical plants where biofilm reactors were used in combination with pretreatment in large septic tanks and chemical post treatment. At the same time the socalled “moving bed biofilm reactor” (MBBR) was developed by a Norwegian company. In this paper, experiences from a small wastewater treatment plant, based on the MBBR and on the recommendations mentioned, will be presented.


2010 ◽  
Vol 61 (12) ◽  
pp. 3017-3025 ◽  
Author(s):  
X. L. Shi ◽  
X. B. Hu ◽  
Z. Wang ◽  
L. L. Ding ◽  
H. Q. Ren

A laboratory-scale anaerobic-anoxic-aerobic-moving bed biofilm reactor (A1-A2-O-MBBR) system was undertaken to treat coke plant wastewaters from two different factories (wastewater A and B). Wastewater B had higher BOD5/COD ratio and COD/TN ratio than wastewater A. The effects of reflux ratios on COD, TN and NH3-N removals were studied. Results indicated that, with the reflux ratio increased from 2 to 5, COD removals of wastewater A and wastewater B increased from 57.4% to 72.6% and 78.2% to 88.6%, respectively. Meanwhile, TN removals were also increased accompanying reflux ratio rise, from 53.1% to 74.4% for wastewater A and 64.2% to 83.5% for wastewater B. At the same reflux ratio, compared with wastewater A, higher COD and TN removal efficiencies were observed in wastewater B, which had higher BOD5/COD and COD/TN ratio. Reflux ratio had no significant influence on NH3-N removal; 99.0% of the overall NH3-N removal efficiency was achieved by the system for both coke plant wastewaters at any tested reflux ratio. MBBR was effective in NH3-N removal, and about 95% of the NH3-N was removed in the MBBR.


1998 ◽  
Vol 38 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Henrik Aspegren ◽  
Ulf Nyberg ◽  
Bengt Andersson ◽  
Sören Gotthardsson ◽  
Jes la Cour Jansen

The Sjölunda wastewater treatment plant in Malmö Sweden will have to comply with future effluent standards of less than 10 mg BOD7/l, 8 mg N/l and 0.3 mg P/l. The upgrading for enhanced nutrient removal will be based on a site-specific concept where a tertiary treatment step for post-denitrification will be required. An interesting process in this respect is the moving bed biofilm reactor (MBBR). The number of practical experiences with this type of process is however still limited. In this paper the results from a pilot plant test are presented. The primary aim of the experiment was to demonstrate the MBBR process as part of an overall concept for nutrient removal at the Sjölunda WWTP. Two different carbon sources, ethanol and methanol were tested. In addition the effect of low phosphate concentrations on the process performance was investigated.


2014 ◽  
Vol 2 (3) ◽  
pp. 33-42
Author(s):  
Mehdi Ahmadi ◽  
Aliakbar Mehr alian ◽  
Hoda Amiri ◽  
Bahman Ramavandi ◽  
Hassan Izanloo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document