Specific oxygen uptake, nitrification and denitrification rates of a zinc-added anoxic/oxic activated sludge process

1998 ◽  
Vol 38 (1) ◽  
pp. 133-139 ◽  
Author(s):  
T. Panswad ◽  
P. Polprucksa

The specific oxygen uptake rate (SOUR), specific nitrification rate (SNR) and specific denitrification rate (SDNR) of an anoxic-oxic activated sludge process fed with zinc-added synthetic wastewaters were investigated. Two different characteristics of synthetic wastewaters were used, i.e., 500 mg/l COD, 40 mg/l TKN and 10 mg/l P (representing normal COD load) for Model A while 3500 mg/l COD, 175 mg/l TKN and 25 mg/l P (representing high COD load) for Model B. The zinc doses varied from 0 (control) to 10, 25, 35 and 50 mg/l. When the two systems reached steady states, they were further shocked with 300 mg/l zinc for 4 consecutive days before returning to their initial conditions. The SRT and F/M ratio of both models were 10 days and 0.26-0.47 day−1, respectively. The endogenous SOURs of both models were not much affected by the increase of zinc concentration. They were about 7.5 to 10 and 9.4 to 11.5 mg O2/g MLSS-hr, for Models A and B, respectively. In Model A, as the zinc increased from 0 to 50 mg/l, the SNRs dropped from 4.0 to 1.4 mg NH4+-N /g MLSS-hr whereas the initial SDNRs fell from 19.6 to 5.3 mg NO3− /g MLSS-hr. Meanwhile, the SNRs of Model B were relatively constant (1.5-1.8 mg NH4+-N /g MLSS-hr) while the initial SDNRs dropped from 16.2 to 8.3 mg NO3− /g MLSS-hr. That is, under high COD load conditions, the zinc dose applied here did not significantly affect the carbon removing heterotrophs and nitrifiers while a slight effect was seen on the denitrifiers and significant retardation was observed for both nitrifiers and denitrifiers in case of normal COD load. During the shock period, the SNRs of Model A dropped to 0.67 to 1.26 mg NH4+-N /g MLSS-hr whereas the initial SDNRs decreased drastically to 1.5 to 3.0 mg NO3− /g MLSS-hr. The impact from the zinc shock in such circumstances was obviously higher on the denitrifiers than on the nitrifiers. In Model B, the SNRs were 0.77 to 1.5 mg NH4+-N /g MLSS-hr and the initial SDNRs were 2.9 to 6.18 mg NO3− /g MLSS-hr. Not much effect on nitrifiers was evident in this case. For Model A, the recoverability of the heterotrophs and the nitrifiers was not so good, while that of the denitrifiers was quite satisfactory. However for Model B, those recuperation abilities were comparable for all three organisms. The data therefore suggested that there may be some differences in the species domain between the carbon removing microorganisms and the denitrifiers, however, further investigations for confirmation are required.

2008 ◽  
Vol 57 (6) ◽  
pp. 915-919 ◽  
Author(s):  
L. Zhang ◽  
L. Mendoza ◽  
M. Marzorati ◽  
W. Verstraete

Hydrogen sulfide emission in sewers is associated with toxicity, corrosion, odor nuisance and a lot of costs. The possibility to inhibit sulfide generation by formaldehyde and its derivatives (paraformaldehyde and urea formaldehyde) has been evaluated under anaerobic conditions. The impact of formaldehyde on an activated sludge system and an appraisal of the economic aspects are also presented. The optimum dosage to inhibit sulfide generation in sewage was 12–19 mg L−1 formaldehyde. The dosages of 32 mg L−1 paraformaldehyde or 100 mg L−1 urea formaldehyde were not capable of inhibiting sulfide generation in sewage. The impact of 19 mg L−1 formaldehyde on activated sludge system was negligible in terms of COD removal, nitrification rate and oxygen uptake rate.


2011 ◽  
Vol 183-185 ◽  
pp. 1476-1480 ◽  
Author(s):  
Xing Sheng Kang ◽  
Chang Qing Liu ◽  
Li Zhu Huang ◽  
Gong Fa Chang ◽  
Zhong Qiao ◽  
...  

The metabolic activity of sludge samples taken from two pilot scale activated sludge reactor was studied. The two reactors were of the same size and structure. One was operated according to the reversed A2/O process (R-reactor) and another was operated according to conventional A2/O process (C-reactor). The activities of dehydrogenase (DHA) and electron transport system (ETS) and the specific oxygen uptake rate (SOUR) of sludge taken from R-reactor were 34.98%, 22.44% and 12.70% higher than those of the sludge taken from C-reactor. As for the R-reactor, the sludge undergoes aerobic condition right after anaerobic experience. Compared to entering aerobic stage from anoxic stage (C-reactor), entering aerobic stage from anaerobic stage can significantly enhance the activity of microbes, accelerate the decomposition of organics and improve the SOUR of the sludge.


2019 ◽  
Vol 4 (2) ◽  
pp. 24-32
Author(s):  
S.H. Tan ◽  
◽  
Jamaiatul Lailah M.J. ◽  
Aida Isma M.I. ◽  
◽  
...  

Activated sludge process is one of the effective methods in biological wastewater treatment and the impact of oxygen transfer through aeration process has the most important breakthroughs as it served as the largest consumer in the treatment. Aeration is an energy demanding process. Oxygen transfer into an activated sludge is a very challenging issue in the field of multiphase flows. Apart from the physical mass transfer phenomena between gas, liquid and solids phases, the transport mechanisms are also overlapped by time and temperature, varying microbial activity, impurity loads, adsorption and desorption processes. Oxygen uptake rate (OUR) for microbial population in the activated sludge system is important parameter to determine the amount of oxygen consumed during aerobic heterotropic biodegradation in the system. Evaluation of specific oxygen uptake rate (SOUR) and the volumetric mass transfer coefficient (KLA) of oxygen for three different wastewater treatment processes, namely conventional activated sludge (CAS), oxidation ditch (OD) and sequencing batch reactor (SBR) treating municipal wastewater in Kuala Lumpur have been carried out. In-situ and ex-situ measurement of pH, dissolved oxygen (DO), temperature, MLSS and MLVSS were carried out. In the activated sludge treatment, very low concentration of dissolved oxygen may cause the wastewater to turn septic resulting in death of bacteria or in active due to unstable anaerobic conditions. Conversely, an excessive dissolved oxygen may result to high energy and high 25 operating cost. Higher flowrate may also cause dissolved oxygen to rise, reducing the quality of sludge and slowing the denitrification process in the system. Results revealed that the OUR for SBR, OD and CAS were 9.582 mg O2 /L/hr, 10.074 mg O2 /L/hr and 13.764 mg O2 /L/hr, respectively. Low oxygen uptake rate indicates a low rate of microbial respiration. By computing the OUR, the mass transfer coefficient could be evaluated. It should be noted that among the treatment system in this study, the conventional activated sludge shows the highest mass transfer coefficient and specific oxygen uptake rate of 2.038 hr-1 and 15.605 mg O2 /g MLVSS/hr, respectively. Improving the oxygen transfer rate and reducing aeration in the system could achieve a cost-effective aeration system.


1994 ◽  
Vol 30 (4) ◽  
pp. 229-238 ◽  
Author(s):  
S. Isaacs ◽  
M. Henze

The fluoresence of a nitrification/denitrification tank in an activated sludge nutrient removal process was monitored over a two month period. The process employs an alternating mode of operation which subjects the sludge to a periodically changing environment (aerobic, anoxic and anaerobic) at the point in the process where the fluoresence is measured. The fluoresence signal decreased slowly during aerated periods and increased slowly during anoxic (denitrifying) periods. An abrupt rise in the fluoresence signal was found to occur upon the transition from anoxic to anaerobic conditions. The minimum fluoresence signal occurring during each operation cycle appeared to define a baseline whose general upward and downward movements correlated well with peak oxygen uptake rate.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
T. Guenkel ◽  
M. Wagner

The standard oxygen transfer rate (SOTR) is the decisive factor in the dimensioning of activated sludge plants. It depends on the required oxygen uptake rate (OUR) by microorganisms. The dependencies of the SOTR and OUR on the wastewater temperature (range 5–30 °C) are discussed. It is shown that the absolute values of the SOTR depend only slightly on the wastewater temperature, while the specific values, in relation to the aerated tank volume, increase considerably as a function of the wastewater temperature. Within this context, the decisive dimensioning temperature is discussed. In addition, two design approaches for determining the SOTR, temperature-dependant and temperature-independent, are presented and compared, showing the impact of the water dependency. Finally, the sensitivity of the decisive factors for determining the SOTR is discussed, particularly addressing the influence of the α-value.


1992 ◽  
Vol 25 (1) ◽  
pp. 123-132 ◽  
Author(s):  
J. Y. Shamas ◽  
A. J. Englande

The immediate maximum specific oxygen uptake rate (SOURim) was investigated as a potential process control parameter for the activated sludge system. Variability in effluent quality in terms of chemical oxygen demand correlated very well with the levels of SOURim at cell residence times of 3, 5, and 10 days. Transient response studied under batch growth conditions indicated a strong correlation between the SOURim, chemical oxygen demand, and the ribonucleic acid rates of change. The SOURim can therefore be used to qualitatively and quantitatively describe a given biomass thus making it a better suited parameter for use in process control strategies.


2009 ◽  
Vol 60 (4) ◽  
pp. 1033-1039
Author(s):  
Ma D. Coello Oviedo ◽  
D. Sales Márquez ◽  
R. Rodriguez-Barroso ◽  
J. Ma Quiroga Alonso

The purpose of the present work was to study the influence of a non-ionic surfactant, a nonylphenol with four ethoxylated units (NP4EO), on the activity of the microbial population present in a laboratory-scale activated sludge unit. Traditional control methods for this type of unit were used (measurement of suspended solids and chemical oxygen demand) as well as specific techniques for the measurement of bacterial activity (dehydrogenase activity and specific oxygen uptake rate) and the results were compared. It was shown that the Specific Oxygen Uptake Rate (SOUR) is the simplest and quickest way to carry out routine control of activated sludge activity, while measuring dehydrogenase activity provides more complete control. The results obtained indicated that there was no inhibition of microbial activity at a concentration of 5 ppm of NP4EO, which was not the case with a concentration of 10 ppm.


Sign in / Sign up

Export Citation Format

Share Document