Dynamics of methanogenic activities in a landfill bioreactor treating the organic fraction of municipal solid wastes

1998 ◽  
Vol 38 (2) ◽  
pp. 177-184 ◽  
Author(s):  
J. J. Lay ◽  
Y. Y. Li ◽  
T. Noike

A bench-scale investigation was conducted to evaluate the dynamics of methanogenic activities in a landfill bioreactor (LFBR) treating the organic fraction of municipal solid wastes (OFMSW). The specific methanogenic activity (SMA) test was used to measure each individual methanogenic activity on degrading carbohydrate, protein, lipid, butyrate, propionate, and acetate at an interval of one-year. A simple model incorporating three biokinetic parameters, namely lag-phase time, methane production rate and methane production potential, was employed to systematically describe the dynamics of SMA on the anaerobic mineralization of the OFMSW in an LFBR. The results indicate that the model is suitable to describe the dynamics of SMA in the LFBR. According to the dynamics of the SMA, the decomposition of proteins and lipids overruled the stabilization of the LFBR, while the rate of methanogenesis was higher than that of acetogenesis. Comparing the estimation and the observation of methane production rates suggested that the period of the critical incubation time (λ*) of the protein and the lipid influenced the efficiency of the LFBR.

2000 ◽  
Vol 41 (3) ◽  
pp. 25-32 ◽  
Author(s):  
M. Okamoto ◽  
T. Miyahara ◽  
O. Mizuno ◽  
T. Noike

The purpose of this study is to investigate the biological hydrogen production potential of individual organic fraction of municipal solid wastes (OFMSW) by batch experiments. Seven varieties of typical organic solid wastes including rice, cabbage, carrot, egg, lean meat, fat and chicken skin were selected to estimate the hydrogen production potential. Among the OFMSW, carbohydrate produced the most hydrogen through biological hydrogen fermentation compared with proteins or lipids. Subsequently, the biological hydrogen production potentials of some individual carbohydrate were measured: cabbage, 26.3–61.7 mL/g-VS; carrot, 44.9–70.7 mL/g-VS; and rice, 19.3–96.0 mL/g-VS. The hydrogen percentages of the total biogas produced from cabbage, carrot and rice were 33.9–55.1%, 27.7–46.8% and 44.0–45.6%, respectively.


2022 ◽  
Vol 204 ◽  
pp. 111988
Author(s):  
Jacqueline Zanin Lima ◽  
Eduardo Ferreira da Silva ◽  
Carla Patinha ◽  
Nuno Durães ◽  
Eny Maria Vieira ◽  
...  

2000 ◽  
Vol 42 (10-11) ◽  
pp. 247-255 ◽  
Author(s):  
J. Paing ◽  
B. Picot ◽  
J. P. Sambuco ◽  
A. Rambaud

Sludge accumulation and the characteristics of anaerobic digestion in sludge had been investigated in a primary anaerobic lagoon. Methanogenic potential of sludge was evaluated by an anaerobic digestion test which measured the methane production rate. Sludge was sampled at several points in the lagoon to determine spatial variations and with a monthly frequency from the start-up of the lagoon to observe the development of anaerobic degradation. Maximum amounts of sludge accumulated near the inlet. The mean methane production of sludge was 2.9 ml gVS–1 d–1. Sludge near the outlet presented a greater methanogenic activity and a lesser concentration of volatile fatty acids than near the inlet. The different stages of anaerobic degradation were spatially separated, acidogenesis near the inlet and methanogenesis near the outlet. This staged distribution seemed to increase efficiency of anaerobic fermentation compared with septic tanks. Methane release at the surface of the lagoon was estimated to be very heterogeneous with a mean of 25 l m–2 d–1. The development of performance and sludge characteristics showed the rapid beginning of methanogenesis, three months after the start-up of the anaerobic lagoon. Considering the volume of accumulated sludge, it could however be expected that methanogenic activity would further increase.


Author(s):  
Nabil Kechaou ◽  
E Ammar

The Municipal Solid Waste of Agareb (Sfax –Tunisia), characterized by high organic fraction and moisture contents is the most worrying pollution source that must be managed by innovative treatment and recycling technologies. Bio-drying, as a waste to energy conversion technology, aims at reducing moisture content of this organic matter. This concept,  similar to composting, is accomplished by using the heat generated from the microbial degradation of the waste matrix, while forced aeration is used. The purpose of this work was to reduce the moisture content of the waste, by maximizing drying and minimizing organic matter biodegradation, in order to produce a solid recovered fuel with high calorific value.Keywords: Municipal solid wastes; organic matter; biodrying; composting; energy recovery.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chaudhry Arslan ◽  
Asma Sattar ◽  
Ji Changying ◽  
Abdul Nasir ◽  
Irshad Ali Mari ◽  
...  

The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of37±0.1°C and55±0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/gCODremovedunder PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/gCODremovedto 89.67 mL/gCODremoved, 91.77 mL/gCODremovedto 145.93 mL/gCODremoved, and 15.36 mL/gCODremovedto 117.62 mL/gCODremovedfor FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.


2011 ◽  
Vol 171 (2) ◽  
pp. 411-417 ◽  
Author(s):  
L.A. Fdez.-Güelfo ◽  
C. Álvarez-Gallego ◽  
D. Sales Márquez ◽  
L.I. Romero García

2008 ◽  
Vol 99 (13) ◽  
pp. 5731-5737 ◽  
Author(s):  
Piotr Sosnowski ◽  
Anna Klepacz-Smolka ◽  
Katarzyna Kaczorek ◽  
Stanislaw Ledakowicz

Sign in / Sign up

Export Citation Format

Share Document