Anaerobic degradation of 2,4,6-trinitrotoluene in granular activated carbon fluidized bed and batch reactors

2001 ◽  
Vol 43 (1) ◽  
pp. 67-75 ◽  
Author(s):  
M. A. Moteleb ◽  
M. T. Suoidan ◽  
J. Kim ◽  
J. L. Davel ◽  
N. R. Adrian

In this study, an anaerobic fluidized bed reactor (AFBR) was used to treat a synthetically produced pink water waste stream containing trinitrotoluene (TNT). The synthesized waste consisted of 95 mg/l-TNT, the main contaminant in pink water, which was to be co-metabolized with 560-mg/l ethanol. Granular activated carbon was used as the attachment medium for biological growth. TNT was reduced to a variety of compounds, mainly 2,4,6-triaminotoluene (2,4,6-TAT), 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT), 2,6-diamino-4-nitrotoluene (2,6-DA-4-NT), 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), and 4-amino-2, 6-dinitrotoluene (4-A-2,6-DNT). These conversions resulted through the oxidation of ethanol to carbon dioxide under anoxic conditions, or reduction to methane under methanogenic conditions. The anaerobic reactor was charged with 1.0 kg of 16×20 U.S. Mesh Granular Activated Carbon (GAC) and was pre-loaded with 200g of TNT prior to the addition of the mixed seed culture. During the first three weeks of operation, ethanol was completely degraded and no methane was produced. Effluent inorganic carbon revealed stoichiometric conversion of the feed ethanol to dissolved inorganic carbon with accumulation of carbon dioxide in the headspace of the reactor. GAC extraction showed incremental reduction of the nitro groups to amino groups, with 2,4,6-TAT as the final product. After three weeks, the oxygen from the nitro groups was depleted and methane production commenced. The reproducibility of this phenomenon was confirmed by repeating the experiment in the same manner using an identical AFBR. Furthermore, serum bottle tests were conducted using TNT loading ratios of 0.2, 0.4, 0.8, 1.0 g-TNT/g-GAC as well as experiments in the absence of GAC. Similar behavior to that of the columns was observed, with degradation rates varying according to the particular condition. GAC greatly enhanced the degradation rates and the higher TNT loading resulted in slower degradation rates of ethanol.

2010 ◽  
Vol 3 (1) ◽  
pp. 107-132 ◽  
Author(s):  
L. T. J. van der Aa ◽  
L. C. Rietveld ◽  
J. C. van Dijk

Abstract. Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen and the production of carbon dioxide were taken as indicators for NOM biodegradation. Ozonation stimulated DOC and AOC removal in the BGAC filters, but had no significant effect on oxygen removal and carbon dioxide production. The temperature had no significant effect on DOC and AOC removal, while oxygen removal and carbon dioxide production increased with increasing temperature. Multivariate linear regression was used to quantify these relations. In summer the ratio between oxygen consumption and DOC removal exceeded the theoretical maximum of 2.5 g O2·g C−1 and the ratio between carbon dioxide production and DOC removal exceeded the theoretical maximum of 3.7 g CO2·g C−1. Bioregeneration of large NOM molecules could explain this excesses and the non-correlation between DOC and AOC removal and oxygen removal and carbon dioxide production. However bioregeneration of large NOM molecules was considered not likely to happen, due to sequestration.


2020 ◽  
Vol 20 (7) ◽  
pp. 4505-4508
Author(s):  
Jong Kyu Kim ◽  
Tingting Jiang ◽  
Zhoujun Li ◽  
Suseeladevi Mayadevi ◽  
Kale Bharat ◽  
...  

Metaldehyde has been detected in drinking water system in relatively high concentration exceeding European water quality standard. In order to address this problem, the aim of this project was to treat metaldehyde aqueous solution by advanced oxidation processes (AOPs) and granular activated carbon (GAC) column. Ten novel materials were tested for degradation rates of metaldehyde under ultraviolet light irradiation (UVC). For treatment of 1 mg/L metaldehyde solution by AOPs, the highest degradation rate is 16.59% under UVC light with the aid of nitrogen doped titanium dioxide coated graphene (NTiO2/Gr). Furthermore, 0.5 mg/L is the optimal concentration for degradation of metaldehyde with N–TiO2/Gr under UVC light. Apart from that, the lifetime of GAC column could be elongated on condition that metaldehyde has been treated by AOPs previously. Hence, combination of AOPs and GAC column is promising in treating water containing metaldehyde.


2010 ◽  
Vol 7 (1) ◽  
pp. 81-93 ◽  
Author(s):  
D. Dissard ◽  
G. Nehrke ◽  
G. J. Reichart ◽  
J. Bijma

Abstract. Evidence of increasing concentrations of dissolved carbon dioxide, especially in the surface ocean and its associated impacts on calcifying organisms, is accumulating. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium carbonate. Hence, their response to an acidifying ocean may have important consequences for future inorganic carbon cycling. To assess the sensitivity of benthic foraminifera to changing carbon dioxide levels and subsequent alteration in seawater carbonate chemistry, we cultured specimens of the shallow water species Ammonia tepida at two concentrations of atmospheric CO2 (230 and 1900 ppmv) and two temperatures (10 °C and 15 °C). Shell weights and elemental compositions were determined. Impact of high and low pCO2 on elemental composition are compared with results of a previous experiment were specimens were grown under ambient conditions (380 ppvm, no shell weight measurements of specimen grown under ambient conditions are, however, available). Results indicate that shell weights decrease with decreasing [CO32−], although calcification was observed even in the presence of calcium carbonate under-saturation, and also decrease with increasing temperature. Thus both warming and ocean acidification may act to decrease shell weights in the future. Changes in [CO32−] or total dissolved inorganic carbon do not affect the Mg distribution coefficient. On the contrary, Sr incorporation is enhanced under increasing [CO32−]. Implications of these results for the paleoceanographic application of foraminifera are discussed.


2011 ◽  
Vol 4 (1) ◽  
pp. 25-35 ◽  
Author(s):  
L. T. J. van der Aa ◽  
L. C. Rietveld ◽  
J. C. van Dijk

Abstract. Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen and the production of carbon dioxide were taken as indicators for NOM biodegradation. Ozonation stimulated DOC and AOC removal in the BGAC filters, but had no significant effect on oxygen consumption or carbon dioxide production. The temperature had no significant effect on DOC and AOC removal, while it had a positive effect on oxygen consumption and carbon dioxide production. Multivariate linear regression was used to quantify these relationships. In summer, the ratio between oxygen consumption and DOC removal was approximately 2 times the theoretical maximum of 2.6 g O2 g C−1 and the ratio between carbon dioxide production and DOC removal was approximately 1.5 times the theoretical maximum of 3.7 g CO2 g C−1. The production and loss of biomass, the degassing of (B)GAC filters, the decrease in the NOM reduction degree and the temperature effects on NOM adsorption could only partly explain these excesses and the non-correlation between DOC and AOC removal and oxygen consumption and carbon dioxide production. It was demonstrated that bioregeneration of NOM could explain the excesses and the non-correlation. Therefore, it was likely that bioregeneration of NOM did occur in the (B)GAC pilot filters.


2014 ◽  
Vol 11 (3) ◽  
pp. 4251-4299 ◽  
Author(s):  
E. M. Thaysen ◽  
D. Jacques ◽  
S. Jessen ◽  
C. E. Andersen ◽  
E. Laloy ◽  
...  

Abstract. The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated. Carbon dioxide partial pressure in the soil gas (pCO2), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles, and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modelled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol carbon (C) m−2 s−1, respectively, and largely exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m−2 s−1. Post-harvest soil respiration (Rs) was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Plant biomass and soil pCO2 were high in the mesocosms as compared to a standard field situation. Our results indicate no change of the cropland C balance under elevated atmospheric CO2 in a warmer future climate, in which plant biomass and soil pCO2 are expected to increase.


2009 ◽  
Vol 6 (2) ◽  
pp. 3771-3802 ◽  
Author(s):  
D. Dissard ◽  
G. Nehrke ◽  
G. J. Reichart ◽  
J. Bijma

Abstract. Evidence is accumulating of increasing concentrations of dissolved carbon dioxide in the ocean and associated acidification impacts on calcifying organisms. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium carbonate. Therefore, their response to an acidifying ocean may have important consequences for future inorganic carbon cycling. To assess the sensitivity of benthic foraminifera to changing carbon dioxide levels and subsequent alteration in seawater carbonate chemistry, we cultured specimens of the shallow water species Ammonia tepida at two concentrations of atmospheric CO2 (120 and 2000 ppm) and two temperatures (10°C and 15°C). Shell weights and elemental compositions were determined. Results indicate that shell weights decrease with decreasing [CO32−], and increase with decreasing temperature. Changes in [CO32−] or total dissolved inorganic carbon do not affect the Mg partition coefficient. On the contrary, Sr incorporation is enhanced under increasing [CO32−]. Implications of these results for the paleoceanographic application of foraminifera are also discussed.


Sign in / Sign up

Export Citation Format

Share Document