nitrogen doped titanium dioxide
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 21)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 22 (7) ◽  
pp. 3759
Author(s):  
Minal Thacker ◽  
Yi-Ning Chen ◽  
Chun-Pin Lin ◽  
Feng-Huei Lin

The available tooth whitening products in the market contain high concentrations of hydrogen peroxide (H2O2) as an active ingredient. Therefore, in order to curb the high H2O2 concentration and instability of liquid H2O2, this study evaluated the efficacy and cytotoxicity of the bleaching gel composed of 10% calcium peroxide (CaO2) and visible-light-activating nitrogen-doped titanium dioxide (N-TiO2) with methyl cellulose as a thickener. Extracted bovine teeth were discolored using coffee and black tea stain solution and were divided into two groups (n = 6). Bleaching was performed thrice on each tooth specimen in both the groups, with one minute of visible light irradiation during each bleaching time. The CIELAB L*a*b* values were measured pre- and post-bleaching. The N-TiO2 calcinated at 350 °C demonstrated a shift towards the visible light region by narrowing the band gap energy from 3.23 eV to 2.85 eV. The brightness (ΔL) and color difference (ΔE) increased as bleaching progressed each time in both the groups. ANOVA results showed that the number of bleaching significantly affected ΔE (p < 0.05). The formulated bleaching gel exhibits good biocompatibility and non-toxicity upon exposure to 3T3 cells. Our findings showed that CaO2-based bleaching gel at neutral pH could be a stable, safe, and effective substitute for tooth whitening products currently available in the market.


2021 ◽  
Vol 23 (1) ◽  
pp. 34-43
Author(s):  
Abbas Jafari ◽  
Mehrban Sadeghi ◽  
Farhang Tirgir ◽  
Mehdi Barghaei

Background and aims: Due to their toxicity and carcinogenic effects, polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (C10H8 ) are regarded as hazardous compounds for both humans and the environment, and it is essential to remove these contaminants from the environment. The present study aimed to remove naphthalene from a synthetic aqueous environment using sulfur and nitrogen doped titanium dioxide (TiO2 -N-S) nanoparticles (NPs) immobilized on glass microbullets under sunlight. Methods: In this experimental study, TiO2 -N-S NPs were synthesized using sol-gel process. The structure of NPs was investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and differential reflectance spectroscopy (DRS). In addition, using statistical analyses, the effects of parameters such as the initial concentration of naphthalene, pH, contact time, and the optimal conditions on naphthalene removal were investigated. Results: XRD patterns and SEM images of the samples confirmed the size of synthesized particles in nanometer. The EDX and DRS spectra analysis showed the presence of two elements (sulfur and nitrogen) and the optical photocatalytic activity in the visible region, respectively. The maximum level of naphthalene removal in the presence of sunlight was obtained to be about 93.55% using a concentration of 0.25 g of thiourea immobilized on glass microbullets at pH=5 and contact time of 90 minutes. Conclusion: The rate of naphthalene removal using the immobilized TiO2 -N-S on glass microbullets was 93.55% in optimal conditions. Therefore, this method has an effective potential for naphthalene removal, and can be used to remove naphthalene from industrial wastewater.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1575
Author(s):  
Michał Tarnowski ◽  
Justyna Witkowska ◽  
Jerzy Morgiel ◽  
Witold Jakubowski ◽  
Bogdan Walkowiak ◽  
...  

NiTi shape memory alloys are increasingly being used as bone and cardiac implants. The oxide layer of nanometric thickness spontaneously formed on their surface does not sufficiently protect from nickel transition into surrounding tissues, and its presence, even in a small amount, can be harmful to the human organism. In order to limit this disadvantageous phenomenon, there are several surface engineering techniques used, including oxidation methods. Due to the usually complex shapes of implants, one of the most prospective methods is low-temperature plasma oxidation. This article presents the role of cathode sputtering in the formation of a titanium dioxide surface layer, specifically rutile. The surface of the NiTi shape memory alloy was modified using low-temperature glow discharge plasma oxidation processes, which were carried out in two variants: oxidation using an argon + oxygen (80% vol.) reactive atmosphere and the less chemically active argon + air (80% vol.), but with a preliminary cathode sputtering process in the Ar + N2 (1:1) plasma. This paper presents the structure (STEM), chemical composition (EDS, SIMS), surface topography (optical profilometer, Atomic Force Microscopy—AFM) and antibacterial properties of nanocrystalline TiO2 diffusive surface layers. It is shown that prior cathodic sputtering in argon-nitrogen plasma almost doubled the thickness of the produced nitrogen-doped titanium dioxide layers despite using air instead of oxygen. The (TiOxNy)2 diffusive surface layer showed a high level of resistance to E. coli colonization in comparison with NiTi, which indicates the possibility of using this surface layer in the modification of NiTi implants’ properties.


Sign in / Sign up

Export Citation Format

Share Document