ultraviolet light irradiation
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 49)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yufen Han ◽  
Jiaqian Li ◽  
Xiaojin Zhang ◽  
Fan Xia ◽  
Yu Dai

Abstract Regulating catalytic activity plays an important role in further optimizing and developing multifunctional catalysts with high selectivity and high activity. Reversible dual regulation of catalytic activity has always been a challenging task. Here, we prepared poly(N-isopropylacrylamide)-anchored gold nanoparticles (AuNP@CDs-Azo-PNIPAM) through host-guest interaction of cyclodextrin capped gold nanoparticles (AuNP@CDs) and azobenzene-terminated poly(N-isopropylacrylamide) (Azo-PNIPAM). Azo-PNIPAM as thermal and light responsive ligand allows reversible dual regulation of catalytic activity. When the temperature is higher than the lowest critical solution temperature (LCST), the PNIPAM chain shrinks rapidly, increasing the steric hindrance around AuNPs and reducing the catalytic activity. Under ultraviolet light irradiation, cis-azobenzene disassembles from cyclodextrin and the number of surface active sites of AuNPs increases, which improves the catalytic activity. The reaction rate of UV irradiation is almost 1.3 times that of visible light irradiation. This work provides a simple and effective strategy for the construction of reversible catalysts.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1095
Author(s):  
Ang Tian ◽  
Tengda Ma ◽  
Xiaoguo Shi ◽  
Dixiang Wang ◽  
Wenyuan Wu ◽  
...  

Benefitting from a suitable band gap, ceria is an excellent material for UV shielding. By solid solution doping and specific micromorphology, its band gap can be effectively controlled. In this paper, ceria doped with lanthanum via oxalate precipitation is combined with a high-temperature roasting process. The properties of the prepared samples are characterized by UV–Vis diffuse reflectance spectroscopy (DRS), Raman, XRD, FESEM and XPS. The absorption threshold of materials is clearly red-shifted in the ultraviolet band, which originates from the electron-phonon generation. To further reveal the mechanism, the density function theory calculation (DFT) is implemented to study the influence of lanthanum concentrations on ceria’s band gap. It is demonstrated that the band gap can even be narrowed to 2.97 eV by optimizing the sintering temperature and lanthanum-doped concentration. To investigate its improved anti-aging properties under ultraviolet rays, different amounts of 5% lanthanum-doped ceria is mixed with an Al-based coating and then coated on the Q235 steel. Combined with an ultraviolet light irradiation experiment and electrochemical test technology, the corrosion resistance of the modified coatings is evaluated. The coating with 20% La-doped ceria provides the best corrosion resistance performance.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xingliang Xu ◽  
Lin Zhang ◽  
Peng Dong ◽  
Zhiqiang Li ◽  
Lianghui Li ◽  
...  

AbstractIn this paper, the effect of ultraviolet (UV) irradiation on the static characteristics of high voltage 4H-SiC PiN is investigated. No significant change is observed in the forward on state characteristic of 4H-SiC PiN diodes before and after ultraviolet light irradiation. However, it is found that the blocking voltage is significantly increased with UV irradiation, which is resulted from the depletion region width extension with the collection of positive charges under the increase of the surface negative charge density. The deep level transient spectroscopy reveals that the UV irradiation induced deep-level defects play a dominant role over the trapped negative charges, and therefore leads to the increase of blocking voltage of 4H-SiC PiN Diodes.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 481
Author(s):  
Pengzhen He ◽  
Zhiyong Zhao ◽  
Yanglan Tan ◽  
Hengchao E ◽  
Minghui Zuo ◽  
...  

Deoxynivalenol (DON) is a major mycotoxin with high toxicity that often contaminates grains, foods and feeds. The traditional approaches for DON removal are difficult to meet industry and agriculture demands due to the high stability of the DON molecule. Therefore, there is an urgent need to develop green and effective strategies for DON degradation. In this study, a batch of photocatalytic nanomaterials of cerium (Ce) doped titanium dioxide (TiO2) were successfully prepared by sol-gel method. The catalysts were systematically characterized by XRD, HRTEM, FT-IR, UV-Vis and XPS. The catalyst 0.5Ce-TiO2 showed superior photocatalytic activity for DON degradation in aqueous solution under ultraviolet light irradiation, better than that of traditional photocatalyst pure TiO2, and 96% DON with initial concentration of 5.0 mg/L could be degraded in 4 h. In addition, the two possible degradation intermediate products C5H8O3 and C17H18O6 were identified, the photocatalytic degradation mechanism and degradation pathway were studied. The results indicate that Ce doped TiO2 photocatalyst can be used to reduce DON effectively.


2021 ◽  
Vol 10 (3) ◽  
pp. xx-xx
Author(s):  
Mai Nguyen Thi Tuyet ◽  
Hue Dang Thi Minh ◽  
Huyen Tran Thi Thu ◽  
Lan Nguyen Thi ◽  
Nga Nguyen Kim ◽  
...  

The experiment had fabricated and studied the properties of ZnO and Cu doped ZnO nanoparticles with the change of the hexamethylene tetramine surfactant content (HMTA) with molar ratio Zn2 +: HMTA = 1: x; x = 1, 2 and 4. The methods were used to study the characteristics of materials such as: XRD, raman shift, SEM, reflection spectrum. The results show that, when the content of surfactant HMTA increased (1-4 mol versus the moles of Zn2+), the size of the nanorods crystals of fabricated materials had reduced from 64.5 to 21.7 nm. The reflectance spectrum of Cu doped ZnO materials samples was lower in the visible light region compared to pure ZnO samples. The photocatalytic properties for decomposition of methylene blue organic dye of the Cu doped ZnO sample (with the greatest concentration of HMTA surfactant of 4 mol versus the moles of Zn2+) reached 98% after 40 minutes of ultraviolet light irradiation, with the rate constant k= 0,13261 min-1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masaaki Akamatsu ◽  
Kazuki Kobayashi ◽  
Hiroki Iwase ◽  
Yoshifumi Sakaguchi ◽  
Risa Tanaka ◽  
...  

AbstractPhoto-induced rapid control of molecular assemblies, such as micelles and vesicles, enables effective and on-demand release of drugs or active components, with applications such as drug delivery systems (DDS) and cosmetics. Thus far, no attempts to optimize the responsiveness of photoresponsive molecular assemblies have been published. We previously reported photoresponsive surfactants bearing a lophine dimer moiety that exhibit fast photochromism in confined spaces, such as inside a molecular assembly. However, rapid control of the micelle structures and solubilization capacity have not yet been demonstrated. In the present work, photo-induced morphological changes in micelles were monitored using in-situ small-angle neutron scattering (SANS) and UV/Vis absorption spectroscopy. An amphiphilic lophine dimer (3TEG-LPD) formed elliptical micelles. These were rapidly elongated by ultraviolet light irradiation, which could be reversed by dark treatment, both within 60 s. For a solution of 3TEG-LPD micelles solubilizing calcein as a model drug molecule, fluorescence and SANS measurements indicated rapid release of the incorporated calcein into the bulk solvent under UV irradiation. Building on these results, we investigated rapid controlled release via hierarchical chemical processes: photoisomerization, morphological changes in the micelles, and drug release. This rapid controlled release system allows for effective and on-demand DDS.


2021 ◽  
Author(s):  
Matteo Lombini ◽  
Emiliano Diolaiti ◽  
Adriano De Rosa ◽  
Luigi Lessio ◽  
Giovanni Pareschi ◽  
...  

The transmission of airborne pathogens represents a major issue to worldwide public health. Ultraviolet light irradiation can contribute to the sanification of air to reduce the pathogen transmission. This study concerns the design of a compact filter for airborne pathogen inactivation by means of UV-C LED sources, whose effective irradiance is enhanced thanks to high reflective surfaces. Ray-tracing and computational fluid dynamic simulations are both used to model the device and to maximize the performance inside the filter volume. Simulations foresee the inhibition of SARS-Cov 2 also in the case of high air fluxes. This study demonstrates that current available LED technology is effective for air sanification purposes.


Sign in / Sign up

Export Citation Format

Share Document