Modelling and simulation of the steady-state of secondary settlers in wastewater treatment plants

2001 ◽  
Vol 43 (7) ◽  
pp. 39-46 ◽  
Author(s):  
I. Queinnec ◽  
D. Dochain

This paper discusses the steady-state modelling of thickening in circular secondary settlers of activated sludge processes. The limitations of the solid flux theory basic models to represent steady-state operating conditions serve as a basis to introduce more sophisticated models derived from computational fluid dynamics. Parameter identification and sensitivity studies have been performed from lab-scale continuous experiments.

2006 ◽  
Vol 53 (3) ◽  
pp. 79-89 ◽  
Author(s):  
G.C. Glover ◽  
C. Printemps ◽  
K. Essemiani ◽  
J. Meinhold

Several levels of complexity are available for modelling of wastewater treatment plants. Modelling local effects rely on computational fluid dynamics (CFD) approaches whereas activated sludge models (ASM) represent the global methodology. By applying both modelling approaches to pilot plant and full scale systems, this paper evaluates the value of each method and especially their potential combination. Model structure identification for ASM is discussed based on a full-scale closed loop oxidation ditch modelling. It is illustrated how and for what circumstances information obtained via CFD (computational fluid dynamics) analysis, residence time distribution (RTD) and other experimental means can be used. Furthermore, CFD analysis of the multiphase flow mechanisms is employed to obtain a correct description of the oxygenation capacity of the system studied, including an easy implementation of this information in the classical ASM modelling (e.g. oxygen transfer). The combination of CFD and activated sludge modelling of wastewater treatment processes is applied to three reactor configurations, a perfectly mixed reactor, a pilot scale activated sludge basin (ASB) and a real scale ASB. The application of the biological models to the CFD model is validated against experimentation for the pilot scale ASB and against a classical global ASM model response. A first step in the evaluation of the potential of the combined CFD-ASM model is performed using a full scale oxidation ditch system as testing scenario.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 329-332 ◽  
Author(s):  
A. B. Karama ◽  
O. O. Onyejekwe ◽  
C. J. Brouckaert ◽  
C. A. Buckley

Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 81-89 ◽  
Author(s):  
C. J. Brouckaert ◽  
C. A. Buckley

Computational Fluid Dynamics (CFD) studies of a secondary clarifier at Durban's Northern Wastewater Treatment Works, and of a clarifier at the potable water treatment plant at Umzinto, a small town near Durban, have been undertaken with a view to improving their load capacities. In both cases the units are located in relatively old treatment plants, which face continually increasing loads due to population growth. Increasing the capacity of existing equipment, rather than installing new equipment, constitutes an efficient use of development capital. Although the two clarifiers have considerable design differences, the CFD studies indicated remarkably similar circulating flows, which concentrate up-flow near the outer wall of the clarifier in the region of the clarified water overflow weirs. Baffles were designed to disrupt the circulation so as to distribute up-flow over a wider area, thereby reducing the maximum vertical velocities. In the case of the wastewater secondary clarifier, the modification has been implemented, and evaluated in comparative tests involving an otherwise identical unmodified clarifier. In the case of the potable water clarifier, the modification has still to be implemented.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 329-338 ◽  
Author(s):  
Marcus W. A. Höfken ◽  
Peter Huber ◽  
Marcus Schäfer ◽  
Ralf Steiner

Stirring and aeration processes are the major operations needed for effective wastewater treatment. Especially in activated sludge processes and the variants of this process stirring and aeration systems need to be chosen carefully since both operations are crucial for the purification power and the energy demand of wwtp's. The aim of the present work is to define the demands on stirring and aeration systems for activated sludge treatment plants, to give an overview about suitable systems currently available on the market including latest developments and to give advice how to choose the optimum system. A brief review of the literature and the market of stirring and aeration systems leads to a simple classification of the existing numerous systems. In order to choose the optimum system, first one has to decide, about the demands in each process step. In anaerobic and anoxic reactors the use of hyperboloid stirring systems or combined hyperboloid stirring and aeration systems which distribute small air bubbles throughout the entire reactor in the aeration mode (for intermittent aeration) and gently circulate bacteria flocks in the stirring mode is recommended. For aerobic processes like BOD-removal and nitrification highly efficient membrane aerating systems using silicone membranes are recommended.


2019 ◽  
Vol 11 (14) ◽  
pp. 3919 ◽  
Author(s):  
Ana Belén Lozano Avilés ◽  
Francisco del Cerro Velázquez ◽  
Mercedes Llorens Pascual del Riquelme

Most purification systems work correctly from the point of view of water quality; purification, like any industrial process, must also be carried out efficiently with a minimization of costs. The overall project examined the potential benefits of using a recommended methodology for process evaluation and energy optimization in the aeration stage of activated sludge in the biological reactor at wastewater treatment plants (WWTP), which accounts for more than 44% of total operating costs. This energy control methodology encompasses the process, the installation and the control system. These three phases are examined in separate articles to make it easier to guide the user in the arduous task of optimizing energy efficiency of the WWTP from start to finish. This article focuses on Phase I of the methodology, the stage in charge of selecting the correct variables to control the best process conditions in the activated sludge system of the WWTP. Operating conditions that are a function of the recommended sludge age are influenced by exogenous factors such as temperature. The implementation of a real-time control system of the selected process variables, adapted to the needs, achieves reductions in the overall energy consumption of the installation, in this phase alone, of more than 15%, by reducing the oxygen requirements of the system and the recirculation ratios.


2017 ◽  
Vol 76 (9) ◽  
pp. 2337-2349 ◽  
Author(s):  
Renato P. Ribeiro ◽  
Rodrigo F. Bueno ◽  
Roque P. Piveli ◽  
Débora C. Kligerman ◽  
William Z. de Mello ◽  
...  

Abstract The continuous measurements of N2O emissions from the aeration tanks of three activated sludge wastewater treatment plants (WWTPs) operated with biological nitrogen removal (BNR) and non-BNR were performed during the different operating conditions of several parameters, such as aeration, dissolved oxygen (DO) profiling and organic shock loading (with landfill leachate). The nitrification process is the main driving force behind N2O emission peaks. There are indications that the variation of the air flow rate influenced N2O emissions; high N2O emissions denote over-aeration conditions or incomplete nitrification, with accumulation of NO2− concentrations. Thus, continuous measurements of N2O emissions can provide information on aeration adequacy and the efficiency of complete nitrification, with major focus on DO control, in order to reduce N2O emissions. An additional concern is the observed propensity of WWTPs in developing countries to receive landfill leachates in their wastewater systems. This practice could have adverse effects on climate change, since wastewater treatment during periods of organic shock loading emitted significantly higher amounts of N2O than without organic shock loading. In short, non-BNR WWTPs are subject to high N2O emissions, in contrast to BNR WWTP with controlled nitrification and denitrification processes.


2008 ◽  
Vol 58 (8) ◽  
pp. 1671-1677 ◽  
Author(s):  
A. F. van Nieuwenhuijzen ◽  
A. G. N. van Bentem ◽  
A. Buunnen ◽  
B. A. Reitsma ◽  
C. A. Uijterlinde

The (low loaded) biological nutrient removing activated sludge process is the generally accepted and applied municipal wastewater treatment method in the Netherlands. The hydraulical and biological flexibility, robustness and cost efficiency of the process for advanced removal of nutrients like nitrogen and phosphorus without (too much) chemicals results in a wide application of the activated sludge process within Dutch waterboards. Presumably, wastewater treatment plants will have to contribute to the improvement of the quality of the receiving surface waters by producing cleaner effluent. In this perspective, the Dutch research organisation STOWA initiated a research project entitled “The Boundaries of the Activated Sludge Process” to investigate the possibilities and limitations of activated sludge processes to improve the effluent quality. It is concluded that the activated sludge process as applied and operated at WWTP's in the Netherlands has the potential to perform even better than the current effluent discharge standards (10 mg Ntotal/l and 1 mg Ptotal/l). Reaching the B-quality effluent (<5mg Ntotal/l and <0.3 mg Ptotal/l) will be possible at almost all WWTPs without major adjustments under the conditions that:   the sludge load is below 0.06 kg BOD/kg TSS.d   the internal recirculation is above 20   the BOD/N ratio of the influent is above 3. Complying with the A-quality effluent (<2.2 Ntotal/l and <0.15 mg Ptotal/l) seems to be difficult (but not impossible) and requires more attention and insight into the activated sludge process. Optimisation measures to reach the A-quality effluent are more thorough and are mostly only achievable by additional construction works (addition of activated sludge volume, increasing recirculation capacity, etc.). It is furthermore concluded that the static HSA-results are comparable to the dynamic ASM-results. So, for fast determinations of the limits of technology of different activated sludge processes static modelling seems to by sufficient.


Sign in / Sign up

Export Citation Format

Share Document