Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene and nickel: laboratory- and pilot-scale study

2002 ◽  
Vol 45 (10) ◽  
pp. 49-54 ◽  
Author(s):  
R. El Mamouni ◽  
R. Jacquet ◽  
P. Gerin ◽  
S.N. Agathos

Laboratory- and pilot-scale studies were conducted in order to adjust and optimize the in-situ conditions for bioremediation of a soil contaminated with trichlororethene (TCE) and nickel. Results from laboratory studies showed that the indigenous microorganisms of the soil were limited by the type of electron donor. A better TCE dechlorination was obtained when the electron donor was composed of a mixture of methanol and lactate, as compared to that with methanol alone. Addition of up to 10 mM of sulphate as external electron acceptor (in combination with TCE) and with a mixture of methanol and lactate as electron donor had no significant effect on the TCE reducing activity of indigenous microorganisms of the soil, while higher concentrations (15 and 20 mM) yielded a lower dechlorination. Long term operation of a large pilot-scale soil reactor demonstrated the feasibility of a single-process in situ soil remediation. Results showed that, on one hand, TCE was progressively and stepwise reduced to cis-dichloroethene (DCE), vinyl chloride (VC) and finally to ethene, using only the indigenous microorganisms of the soil. On the other hand, stimulating the activity of sulphate-reducing bacteria of the soil with the addition of sulphate as electron acceptor was efficient in precipitating nickel as nickel sulphide.

2014 ◽  
Vol 70 (9) ◽  
pp. 1540-1547 ◽  
Author(s):  
Shengpin Li ◽  
Guoxin Huang ◽  
Xiangke Kong ◽  
Yingzhao Yang ◽  
Fei Liu ◽  
...  

In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH4+-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH4+-N was microbially oxidized to nitrate. Any remaining NH4+-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH4+-N was consistently removed, and approximately 40% of the influent NH4+-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH4+-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH4+-N removal.


Author(s):  
Arndt Wiessner ◽  
Jochen A. Müller ◽  
Peter Kuschk ◽  
Uwe Kappelmeyer ◽  
Matthias Kästner ◽  
...  

The large scale of the contamination by the former carbo-chemical industry in Germany requires new and often interdisciplinary approaches for performing an economically sustainable remediation. For example, a highly toxic and dark-colored phenolic wastewater from a lignite pyrolysis factory was filled into a former open-cast pit, forming a large wastewater disposal pond. This caused an extensive environmental pollution, calling for an ecologically and economically acceptable strategy for remediation. Laboratory-scale investigations and pilot-scale tests were carried out. The result was the development of a strategy for an implementation of full-scale enhanced in situ natural attenuation on the basis of separate habitats in a meromictic pond. Long-term monitoring of the chemical and biological dynamics of the pond demonstrates the metamorphosis of a former highly polluted industrial waste deposition into a nature-integrated ecosystem with reduced danger for the environment, and confirmed the strategy for the chosen remediation management.


2017 ◽  
Author(s):  
Dawn E Holmes ◽  
Roberto Orelana ◽  
Ludovic Giloteaux ◽  
Li-Ying Wang ◽  
Pravin Shrestha ◽  
...  

AbstractPrevious studies ofin situbioremediation of uranium-contaminated groundwater with acetate injections have focused on the role ofGeobacterspecies in U(VI) reduction because of a lack of other abundant known U(VI)-reducing microorganisms. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genusMethanosarcinawere enriched after 40 days of acetate amendment. The increased abundance ofMethanosarcinacorresponded with an accumulation of methane in the groundwater. An enrichment culture dominated by aMethanosarcinaspecies with the sameMethanosarcina mcrAsequence that predominated in the field experiment could effectively convert acetate to methane. In order to determine whetherMethanosarcinaspecies could be participating in U(VI) reduction in the subsurface, cell suspensions ofM. barkeriwere incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically activeM. barkericells, however, no U(VI) reduction was observed in inactive controls. These results demonstrate thatMethanosarcinaspecies could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth ofGeobacterspecies. The results also suggest thatMethanosarcinahave the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.


2012 ◽  
Vol 198-199 ◽  
pp. 163-170 ◽  
Author(s):  
Eduardo Isanta ◽  
María E. Suárez-Ojeda ◽  
Ángeles Val del Río ◽  
Nicolás Morales ◽  
Julio Pérez ◽  
...  

2020 ◽  
Author(s):  
Karol Jedrzejczak ◽  
Marcin Kasztelan ◽  
Jacek Szabelski ◽  
Przemysław Tokarski ◽  
Jerzy Orzechowski ◽  
...  

<p>The BSUIN (Baltic Sea Underground Innovation Network) aims to enhance the accessibility of the underground laboratories in the Baltic Sea region for innovation, business and science. One of the BSUIN project activities is characterization of natural background radiation (NBR) in underground facilities. A specific type of NRB is neutron radiation, whose measurement requires specific instruments and long-term exposure in-situ, in heavy underground conditions.</p><p>In this talk the method of natural neutron radiation background will be presented as well as results of pilot measurements in several underground locations. In order to make this measurements, a measuring setup was designed and made. The setup design is closely matched to the task: the setup is scalable in a wide range, completely remotely controlled (via the Internet) and capable of long-term operation (months).</p><p>The pilot measurements were performed in Callio Lab, Pyhäsalmi, Finland, (4100 m w.e.), in Reiche Zeche mine in Freiberg, Germany (410 m w.e.) and in Experimental Mine “Barbara” in Mikołów, Poland (100 m w.e).</p>


1999 ◽  
Vol 121 (4) ◽  
pp. 798-803 ◽  
Author(s):  
Toshiyuki Osada ◽  
Takashi Kawakami ◽  
Tadashi Yokoi ◽  
Yoshinobu Tsujimoto

ISO 10816-3 (a new standard of International Organization for Standardization) was established as vibration criteria for industrial rotating machinery based on the bearing housing vibration in situ. The appropriateness of the application of the proposed vibration criteria to pumps was discussed and studied by a work group in Japan. For the assessment, the data of vibration level in field were measured, and the effects of driver output, rotational speed, and pump type were studied. This paper describes the applicability of the new ISO criteria to the evaluation of vibration level of pumps, based on the results of the field measurements. It was found that the new boundaries of evaluation zones, which are acceptable for unrestricted long-term operation of pumps, are quite appropriate and satisfactory.


2013 ◽  
Vol 67 (3) ◽  
pp. 453-468 ◽  
Author(s):  
A. Careghini ◽  
S. Saponaro ◽  
E. Sezenna

Biobarriers (BBs) are a new type of in situ technology for the remediation of contaminated groundwater. In recent years, this remediation technique has been more and more used in place of traditional Pump & Treat systems or other in situ technologies both in the USA and Europe. This work reviews the main experiences of BBs. The literature contains reports about tests and application at different scales (laboratory, pilot and full scale), which have been analyzed according to the aim of the study, the operative conditions adopted, the filling material, the inoculation procedure, the electron acceptor and the nutrient delivery systems. Operative conditions were extremely varied. Lab scale experiments pointed out good results in terms of pollutant removal efficiency. Pilot scale tests and full-scale applications confirmed the results obtained at lab scale, but also pointed out the importance of design for a proficient remediation system. The experiences underlined some possible critical issues: (a) the filling material must ensure proper hydraulic properties, but it also must be capable of keeping biomass in the reactive zone; (b) inoculation is a critical step and measurements should be carried out to check the initial distribution of microorganisms and its evolution over time; (c) electron acceptor and nutrient supply is usually required, but oxygenation into anaerobic aquifers can be critical.


Author(s):  
Karol Mičieta

The aim of this study is to provide an effective method for indicating ecogenotoxicity in the environment using pollen grains and microspores of selected species of the native flora in the in situ conditions. In the report, we summarize the results of long-term experience with the benefits of native flora species as bioindicators of polluted environments. We present the current results of long-term monitoring of phytoindication of ecogenotoxicity in Bratislava and selected traffic junctions in Slovakia. The increase of pollen grain abortion in the group of localities exposed to a heavy load of traffic pollution demonstrates the ecogenotoxic impact of traffic emissions in the environment. The detailed practical methodological tools and possible difficulties with the classification of abortivity of microspores and pollen grains of these plant species are discussed.


Sign in / Sign up

Export Citation Format

Share Document