Long-Term Operation of a Pilot-Scale Membrane Bioreactor Treating Brewery Wastewater: Relaxation as a Method for Detection of Membrane Fouling

2021 ◽  
Vol 147 (4) ◽  
pp. 04021005
Author(s):  
Marcus Verhuelsdonk ◽  
Karl Glas ◽  
Harun Parlar
2011 ◽  
Vol 63 (9) ◽  
pp. 1906-1912 ◽  
Author(s):  
Simos Malamis ◽  
Andreas Andreadakis ◽  
Daniel Mamais ◽  
Constantinos Noutsopoulos

The aim of this work was to evaluate the long-term performance of a Membrane Bioreactor (MBR) that operated continuously for 2.5 years and to assess membrane fouling and biomass activity under various operating conditions. Furthermore, a method for the characterisation of influent wastewater was developed based on its separation into various fractions. The MBR system operated at the solids retention times (SRT) of 10, 15, 20 and 33 days. The increase of SRT resulted in a decrease of the fouling rate associated with the reduction of extracellular polymeric substances. Moreover, the SRT increase resulted in a significant reduction of the Oxygen Uptake Rate (OUR) due to the lower availability of substrate and in a notable decrease of the maximum OUR since high SRT allowed the development of slower growing microorganisms. Biomass consisted of small flocs due to extensive deflocculation caused by intense aeration. Finally, the method developed for wastewater characterisation is straightforward and less time consuming than the usual method that is employed.


RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31364-31372
Author(s):  
Mengjing Cao ◽  
Yongxiang Zhang ◽  
Yan Zhang

A novel and amplifying anaerobic electrochemical membrane bioreactor was constructed and operated for a long time (204 days) with synthetic glucose solution having an average chemical oxygen demand (COD) of 315 mg L−1, at different applied voltages and room temperatures.


2004 ◽  
Vol 4 (1) ◽  
pp. 143-149 ◽  
Author(s):  
T. Itonaga ◽  
Y. Watanabe

This paper deals with the performance of a hybrid membrane bioreactor (MBR) combined with pre-coagulation/sedimentation. Primary clarifier effluent in a municipal wastewater treatment plant was fed into the hybrid MBR to investigate its performance during long-term operation. Pre-coagulation/sedimentation process efficiently removed the suspended solids including organic matter and phosphorus. Comparison of the hybrid MBR and conventional MBR was made in terms of the permeate quality and membrane fouling. As the organic loading to the MBR was significantly reduced by the pre-coagulation/sedimentation, production and accumulation of extracellular polymeric substances (EPS) may be limited. Therefore, the mixed liquor viscosity in the hybrid MBR was much lower than that in the conventional MBR. These effect caused by pre-coagulation/sedimentation brought a remarkable improvement in both permeate quality and membrane permeability.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jianfeng Li ◽  
Yanjun Liu ◽  
Xiaoning Li ◽  
Fangqin Cheng

Abstract The aerobic granular sludge membrane bioreactor (AGS-MBR) has the potential for simultaneous carbon/nitrogen removal and membrane fouling mitigation. Most studies have focused on comparison of granular sludge MBR and flocculent sludge MBR in short-term tests using synthetic wastewater. In this study, two identical AGS-MBRs were developed, and the reactor performance and membrane fouling were examined systemically over 120 days for synthetic wastewater and municipal sewage treatment, respectively. Results showed that regular granules with good settling ability were developed and maintained throughout the experimental period. Regardless of the substrate type, AGS-MBR demonstrated a stable removal of carbon (85–95%) and nitrogen (50–55%) in long-term operation. In addition, the membrane fouling propensity is apparently lower in AGS-MBRs with no membrane cleaning for 4 months at a flux of 20 L m−2h−1. The filtration resistance analysis indicates that the main membrane resistance was caused by irreversible fouling in both of the reactors. Membrane foulant analysis indicates that proteins in extracellular polymeric substances are more prone to be attached by the membrane of AGS-MBRs because of their hydrophobic nature. This study shows that AGS-MBR is effective and stable for municipal sewage treatment and reuse during long-term operation.


2020 ◽  
Vol 81 (3) ◽  
pp. 529-534
Author(s):  
T. Kakuda ◽  
H. Iwasaki ◽  
K. Kimura

Abstract Sludge filterability in membrane bioreactors (MBRs) fluctuates and affects membrane fouling. Therefore, understanding the reasons for the fluctuations of sludge filterability is important for the efficient operation of MBRs. In this study, a pilot-scale MBR treating municipal wastewater was operated for about 600 days and the variations in sludge filterability were continuously monitored by batch-filtration experiments using the same membranes as in the MBR. To investigate the reasons for the deterioration of sludge filterability, constituents in sludge supernatant were intensively monitored, and the correlations with sludge filterability were determined. The concentration of lipopolysaccharides (LPS) in sludge supernatant exhibited significantly higher correlation with sludge filterability than did conventional indexes (i.e. polysaccharides and proteins). Size fractions affecting MBR sludge filterability were also investigated, and it was suggested that colloidal LPS deteriorated MBR sludge filterability. Based on the long-term operation of the MBR, increase in colloidal LPS under low temperatures of the mixed liquor suspension was a key factor in the deterioration of sludge filterability. The impact of LPS increasing under low temperatures should be investigated by operating bench-scale MBRs fed with synthetic wastewater in controlled conditions.


Sign in / Sign up

Export Citation Format

Share Document