Groundwater pollution risk assessment methodology

2003 ◽  
Vol 47 (9) ◽  
pp. 1-7 ◽  
Author(s):  
L. Lytton ◽  
S. Howe ◽  
R. Sage ◽  
P. Greenaway

A generic groundwater pollution risk assessment methodology has been developed to enable the evaluation and ranking of the potential risk of pollution to groundwater abstractions. The ranking can then be used to prioritise risk management or mitigation procedures in a robust and quantifiable framework and thus inform business investment decisions. The risk assessment considers the three components of the pollution transport model: source - pathway - receptor. For groundwater abstractions these correspond to land use (with associated pollutants and shallow subsurface characteristics), aquifer and the abstraction borehole. An hierarchical approach was chosen to allow the risk assessment to be successfully carried out with different quality data for different parts of the model. The 400-day groundwater protection zone defines the catchment boundary that forms the spatial limit of the land use audit for each receptor. A risk score is obtained for each land use (potential pollution source) within the catchment. These scores are derived by considering the characteristics (such as load, persistence and toxicity) of all pollutants pertaining to each land use, their on-site management and the potential for the unsaturated subsurface to attenuate their effects in the event of a release. Risk scores are also applied to the aquifer characteristics (as pollutant pathway) and to the abstraction borehole (as pollutant receptor). Each risk score is accompanied by an uncertainty score which provides a guide to the confidence in the data used to compile the risk assessment. The application of the methodology has highlighted a number of problems in this type of work and results of initial case studies are being used to trial alternative scoring methods and a more simplified approach to accelerate the process of pollution risk assessment.

2015 ◽  
Vol 14 (6) ◽  
pp. 1399-1408 ◽  
Author(s):  
Catalin Cioaca ◽  
Cristian-George Constantinescu ◽  
Mircea Boscoianu ◽  
Ramona Lile

2018 ◽  
Author(s):  
Michael H. Azarian

Abstract As counterfeiting techniques and processes grow in sophistication, the methods needed to detect these parts must keep pace. This has the unfortunate effect of raising the costs associated with managing this risk. In order to ensure that the resources devoted to counterfeit detection are commensurate with the potential effects and likelihood of counterfeit part usage in a particular application, a risk based methodology has been adopted for testing of electrical, electronic, and electromechanical (EEE) parts by the SAE AS6171 set of standards. This paper provides an overview of the risk assessment methodology employed within AS6171 to determine the testing that should be utilized to manage the risk associated with the use of a part. A scenario is constructed as a case study to illustrate how multiple solutions exist to address the risk for a particular situation, and the choice of any specific test plan can be made on the basis of practical considerations, such as cost, time, or the availability of particular test equipment.


2005 ◽  
Vol 5 (2) ◽  
pp. 123-134 ◽  
Author(s):  
R. Miller ◽  
B. Whitehill ◽  
D. Deere

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows: Element 2 Assessment of the Drinking Water Supply System• Water Supply System analysis• Review of Water Quality Data• Hazard Identification and Risk Assessment Element 3 Preventive Measures for Drinking Water Quality Management• Preventive Measures and Multiple Barriers• Critical Control Points This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event. It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.


2012 ◽  
Author(s):  
Takeshi Shinoda ◽  
Takashi Tanaka

It is a challenge to prevent an occupational accident in any industrial activities. The aim of this study is to improve the safety and reduce the risk of occupational accidents at shipyard through developing a risk assessment. This paper describes the concept and methodology of risk assessment for occupational safety and its application. The methodology introduces an effective and useful assessment procedure to construct the database based on the past occupational accidents occurred at shipyards. Quantitative methodology is developed to understand the unsafe working conditions and environment at the shipyard by the convenient handheld to collect the data with Information Technology. Some examples of effective hazard countermeasures are suggested and a feasibility study is conducted to improve a walking environment at shipyards.


2014 ◽  
Vol 29 (2) ◽  
pp. 513-526 ◽  
Author(s):  
Limao Zhang ◽  
Xianguo Wu ◽  
Queqing Chen ◽  
Miroslaw J. Skibniewski ◽  
Jingbing Zhong

Sign in / Sign up

Export Citation Format

Share Document