Automated sequencing batch bioreactor under extreme peaks of 4-chlorophenol

2003 ◽  
Vol 47 (10) ◽  
pp. 175-181 ◽  
Author(s):  
G. Buitrón ◽  
M.-E. Schoeb ◽  
J. Moreno

The operation of a sequencing batch bioreactor is evaluated when high concentration peaks of a toxic compound (4-chlorophenol, 4CP) are introduced into the reactor. A control strategy based on the dissolved oxygen concentration, measured on line, is utilized. To detect the end of the reaction period, the automated system search for the moment when the dissolved oxygen has passed by a minimum, as a consequence of the metabolic activity of the microorganisms and right after to a maximum due to the saturation of the water (similar to the self-cycling fermentation, SCF, strategy). The dissolved oxygen signal was sent to a personal computer via data acquisition and control using MATLAB and the SIMULINK package. The system operating under the automated strategy presented a stable operation when the acclimated microorganisms (to an initial concentration of 350 mg 4CP/L), were exposed to a punctual concentration peaks of 600 mg 4CP/L. The 4CP concentrations peaks superior or equals to 1,050 mg/L only disturbed the system from a short to a medium term (one month). The 1,400 mg/L peak caused a shutdown in the metabolic activity of the microorganisms that led to the reactor failure. The biomass acclimated with the SCF strategy can partially support the variations of the toxic influent since, at the moment in which the influent become inhibitory, there is a failure of the system.

2001 ◽  
Vol 43 (3) ◽  
pp. 93-100 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

In this study, laboratory-scale experiments were conducted applying the SBR activated sludge process to a wastewater from a wood factory operating on plywood production. Due to the fact that the wastewater is characterised with a high concentration of ammonia, the aim was to evaluate the nitrogen removal process with SBR system operating with a on-line control of ORP, pH and DO. The complete ammonia removal corresponded exactly to the “Ammonia Valley” in the pH versus time graphic. The ammonia removal efficiency in SBR was 99% at 20°C. The denitrification reaction was completed when in the ORP versus time graphic appeared the “Nitrate Knee”. From the experimental results the optimisation of the SBR cycle allowed the doubling of the applied load with respect to a not optimised cycle (performed in the same volume reactor), without a decrease in the removal efficiency. Moreover, the possibility of stopping the aeration just after the appearance of the Ammonia Valley allows an energy saving. The easy operation and the low cost make the SBR system an interesting option for the biological pre-treatment of plywood industry to be discharged into surface water.


Author(s):  
Glenn M. Cohen ◽  
Radharaman Ray

Retinal,cell aggregates develop in culture in a pattern similar to the in ovo retina, forming neurites first and then synapses. In the present study, we continuously exposed chick retinal cell aggregates to a high concentration (1 mM) of carbamylcholine (carbachol), an acetylcholine (ACh) analog that resists hydrolysis by acetylcholinesterase (AChE). This situation is similar to organophosphorus anticholinesterase poisoning in which the ACh level is elevated at synaptic junctions due to inhibition of AChE, Our objective was to determine whether continuous carbachol exposure either damaged cholino- ceptive neurites, cell bodies, and synaptic elements of the aggregates or influenced (hastened or retarded) their development.The retinal tissue was isolated aseptically from 11 day embryonic White Leghorn chicks and then enzymatically (trypsin) and mechanically (trituration) dissociated into single cells. After washing the cells by repeated suspension and low (about 200 x G) centrifugation twice, aggregate cell cultures (about l0 cells/culture) were initiated in 1.5 ml medium (BME, GIBCO) in 35 mm sterile culture dishes and maintained as experimental (containing 10-3 M carbachol) and control specimens.


1994 ◽  
Vol 33 (01) ◽  
pp. 60-63 ◽  
Author(s):  
E. J. Manders ◽  
D. P. Lindstrom ◽  
B. M. Dawant

Abstract:On-line intelligent monitoring, diagnosis, and control of dynamic systems such as patients in intensive care units necessitates the context-dependent acquisition, processing, analysis, and interpretation of large amounts of possibly noisy and incomplete data. The dynamic nature of the process also requires a continuous evaluation and adaptation of the monitoring strategy to respond to changes both in the monitored patient and in the monitoring equipment. Moreover, real-time constraints may imply data losses, the importance of which has to be minimized. This paper presents a computer architecture designed to accomplish these tasks. Its main components are a model and a data abstraction module. The model provides the system with a monitoring context related to the patient status. The data abstraction module relies on that information to adapt the monitoring strategy and provide the model with the necessary information. This paper focuses on the data abstraction module and its interaction with the model.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Man Zhang ◽  
Bogdan Marculescu ◽  
Andrea Arcuri

AbstractNowadays, RESTful web services are widely used for building enterprise applications. REST is not a protocol, but rather it defines a set of guidelines on how to design APIs to access and manipulate resources using HTTP over a network. In this paper, we propose an enhanced search-based method for automated system test generation for RESTful web services, by exploiting domain knowledge on the handling of HTTP resources. The proposed techniques use domain knowledge specific to RESTful web services and a set of effective templates to structure test actions (i.e., ordered sequences of HTTP calls) within an individual in the evolutionary search. The action templates are developed based on the semantics of HTTP methods and are used to manipulate the web services’ resources. In addition, we propose five novel sampling strategies with four sampling methods (i.e., resource-based sampling) for the test cases that can use one or more of these templates. The strategies are further supported with a set of new, specialized mutation operators (i.e., resource-based mutation) in the evolutionary search that take into account the use of these resources in the generated test cases. Moreover, we propose a novel dependency handling to detect possible dependencies among the resources in the tested applications. The resource-based sampling and mutations are then enhanced by exploiting the information of these detected dependencies. To evaluate our approach, we implemented it as an extension to the EvoMaster tool, and conducted an empirical study with two selected baselines on 7 open-source and 12 synthetic RESTful web services. Results show that our novel resource-based approach with dependency handling obtains a significant improvement in performance over the baselines, e.g., up to + 130.7% relative improvement (growing from + 27.9% to + 64.3%) on line coverage.


Dramatherapy ◽  
2021 ◽  
pp. 026306722110208
Author(s):  
Claire Anne Quigley

The Covid-19 restrictions have limited the access of face-to face therapies for many people and continues to effect how Dramatherapists operate. The following article offers reflections around adapting to an on-line medium, focusing more specifically around the software of ProReal. Limitations and considerations are acknowledged, including technological difficulties, computer efficacy, ambiguity tolerance and the need for careful contracting and reassurance of autonomy and control when using on-line platforms. The article ends with a short selection of vignettes from ProReal sessions.


Sign in / Sign up

Export Citation Format

Share Document