Use of ORP (oxidation-reduction potential) to control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate wastewater

2003 ◽  
Vol 47 (12) ◽  
pp. 183-189 ◽  
Author(s):  
S.K. Khanal ◽  
C. Shang ◽  
J.-C. Huang

In this study, oxidation-reduction potential (ORP) was used as a controlling parameter to regulate oxygen dosing to the recycled biogas for online sulfide oxidation in an upflow anaerobic filter (UAF) system. The UAF was operated with a constant influent COD of 18,000 mg/L, but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially operated under a natural ORP of -290 mV (without oxygen injection), and was then followed by oxygenation to raise its ORP by 25 mV above the natural level for each influent sulfate condition. At 6,000 mg/L sulfate without oxygen injection, the dissolved sulfide reached 733.8 mg S/L with a corresponding free sulfide of 250.3 mg S/L, thus showing a considerable inhibition to methanogens. Upon oxygenation to raise its ORP to -265 mV (i.e., a 25 mV increase), the dissolved sulfide was reduced by more than 98.5% with a concomitant 45.9% increase of the methane yield. Under lower influent sulfate levels of 1,000 and 3,000 mg/L, the levels of sulfides produced, even under the natural ORP, did not impose any noticeable toxicity to methanogens. Upon oxygenation to raise the ORP by +25 mV, the corresponding methane yields were actually reduced by 15.5% and 6.2%, respectively. However, such reductions were not due to the adverse impact of the elevated ORP; instead, they were due to a diversion of some organic carbon to support the facultative activities inside the reactor as a result of excessive oxygenation. In other words, to achieve satisfactory sulfide oxidation for the lower influent sulfate conditions, it was not necessary to raise the ORP by as much as +25 mV. The ORP increase actually needed depended on both the influent sulfate and also actual wastewater characteristics. This study had proved that the ORP controlled oxygenation was reliable for achieving consistent online sulfide control.

2004 ◽  
Vol 4 (1) ◽  
pp. 35-45
Author(s):  
J.-C. Huang ◽  
S. Kumar Khanal

In this study, a preset oxidation-reduction potential (ORP) was employed to regulate oxygen dosing for online sulfide toxicity control during anaerobic treatment of high sulfate wastewater. The experiment was conducted in an upflow anaerobic reactor (UAF), which was operated at a constant influent total organic carbon (TOC) of 6740 mg/L (equivalent to a chemical oxygen demand (COD) of 18000 mg/L) but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially run without oxygen injection at a natural ORP of about −290 to −300 mV and then was followed by oxygenation to raise ORP by +25 mV above the natural level for each influent sulfate level. With 1000 and 3000 mg/L influent sulfates, the produced sulfide levels did not impose any appreciable toxicity to methanogens even without oxygen injection. However, with 6000 mg/L influent sulfate without oxygen injections, the dissolved sulfide level quickly went up to over 800 mg/L which imposed a significant suppression on methanogenesis. Upon oxygen injection to raise the ORP by +25 mV, the dissolved sulfide was quickly reduced to 160 mg/L. If more oxygen was injected to raise the ORP by +50 mV, then dissolved sulfide further decreased to 12.2 mg/L with a concomitant improvement in methane yield by 45.9%. With a +25 mV preset ORP increase, it was found that at the 1000 mg/L influent sulfate the supplied oxygen was more than that needed for sulfide oxidation. The excess oxygen could be utilized readily by facultative heterotrophs for organic oxidation, which contributed 13.5% of the total COD removal in the UAF. At the higher sulfate levels of 3000 and 6000 mg/L, the facultative contributions to the total COD removal were only 4.7 and 4.1%, respectively. This study has clearly demonstrated that ORP is a workable and reliable means for regulating oxygen injection to achieve online sulfide toxicity control in a single-stage anaerobic system treating high sulfate wastewater.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Adnan Kadić ◽  
Anikó Várnai ◽  
Vincent G. H. Eijsink ◽  
Svein Jarle Horn ◽  
Gunnar Lidén

Abstract Background Biochemical conversion of lignocellulosic biomass to simple sugars at commercial scale is hampered by the high cost of saccharifying enzymes. Lytic polysaccharide monooxygenases (LPMOs) may hold the key to overcome economic barriers. Recent studies have shown that controlled activation of LPMOs by a continuous H2O2 supply can boost saccharification yields, while overdosing H2O2 may lead to enzyme inactivation and reduce overall sugar yields. While following LPMO action by ex situ analysis of LPMO products confirms enzyme inactivation, currently no preventive measures are available to intervene before complete inactivation. Results Here, we carried out enzymatic saccharification of the model cellulose Avicel with an LPMO-containing enzyme preparation (Cellic CTec3) and H2O2 feed at 1 L bioreactor scale and followed the oxidation–reduction potential and H2O2 concentration in situ with corresponding electrode probes. The rate of oxidation of the reductant as well as the estimation of the amount of H2O2 consumed by LPMOs indicate that, in addition to oxidative depolymerization of cellulose, LPMOs consume H2O2 in a futile non-catalytic cycle, and that inactivation of LPMOs happens gradually and starts long before the accumulation of LPMO-generated oxidative products comes to a halt. Conclusion Our results indicate that, in this model system, the collapse of the LPMO-catalyzed reaction may be predicted by the rate of oxidation of the reductant, the accumulation of H2O2 in the reactor or, indirectly, by a clear increase in the oxidation–reduction potential. Being able to monitor the state of the LPMO activity in situ may help maximizing the benefit of LPMO action during saccharification. Overcoming enzyme inactivation could allow improving overall saccharification yields beyond the state of the art while lowering LPMO and, potentially, cellulase loads, both of which would have beneficial consequences on process economics.


Author(s):  
Kamil Gill ◽  
Michal Kups ◽  
Patryk Harasny ◽  
Tomasz Machalowski ◽  
Marta Grabowska ◽  
...  

Since varicocele is so common in infertile men, this study intends to analyse the relationships between varicocele and conventional semen characteristics, sperm nuclear DNA dispersion and oxidation-reduction potential (ORP) in semen. Varicocele-positive and varicocele-negative infertile men (study groups) showed significantly lower standard sperm parameters and higher sperm DNA fragmentation (SDF) and ORP in semen than healthy volunteers and subjects with proven fertility (control groups). A lower proportion of low SDF levels (0–15% SDF) and higher incidence of high SDF levels (>30% SDF), as well as a higher prevalence of high ORP values (>1.37 mV/106 sperm/mL), were found in the study groups vs. the control groups. Moreover, infertile men had significantly lower odds ratios (ORs) for low SDF levels and significantly higher ORs for high SDF levels and high ORP. SDF and ORP were negatively correlated with sperm number, morphology, motility and vitality. Furthermore, a significant positive correlation was found between SDF and ORP. The obtained results suggest that disorders of spermatogenesis may occur in varicocele-related infertility. These abnormalities are manifested not only by reduced standard semen parameters but also by decreased sperm DNA integrity and simultaneously increased oxidative stress in semen.


Sign in / Sign up

Export Citation Format

Share Document