Application of oxidation–reduction potential as a controlling parameter in waste activated sludge hydrolysis

2002 ◽  
Vol 90 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Cheng-Nan Chang ◽  
Ying-Shih Ma ◽  
Chun-Wei Lo
2003 ◽  
Vol 47 (12) ◽  
pp. 183-189 ◽  
Author(s):  
S.K. Khanal ◽  
C. Shang ◽  
J.-C. Huang

In this study, oxidation-reduction potential (ORP) was used as a controlling parameter to regulate oxygen dosing to the recycled biogas for online sulfide oxidation in an upflow anaerobic filter (UAF) system. The UAF was operated with a constant influent COD of 18,000 mg/L, but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially operated under a natural ORP of -290 mV (without oxygen injection), and was then followed by oxygenation to raise its ORP by 25 mV above the natural level for each influent sulfate condition. At 6,000 mg/L sulfate without oxygen injection, the dissolved sulfide reached 733.8 mg S/L with a corresponding free sulfide of 250.3 mg S/L, thus showing a considerable inhibition to methanogens. Upon oxygenation to raise its ORP to -265 mV (i.e., a 25 mV increase), the dissolved sulfide was reduced by more than 98.5% with a concomitant 45.9% increase of the methane yield. Under lower influent sulfate levels of 1,000 and 3,000 mg/L, the levels of sulfides produced, even under the natural ORP, did not impose any noticeable toxicity to methanogens. Upon oxygenation to raise the ORP by +25 mV, the corresponding methane yields were actually reduced by 15.5% and 6.2%, respectively. However, such reductions were not due to the adverse impact of the elevated ORP; instead, they were due to a diversion of some organic carbon to support the facultative activities inside the reactor as a result of excessive oxygenation. In other words, to achieve satisfactory sulfide oxidation for the lower influent sulfate conditions, it was not necessary to raise the ORP by as much as +25 mV. The ORP increase actually needed depended on both the influent sulfate and also actual wastewater characteristics. This study had proved that the ORP controlled oxygenation was reliable for achieving consistent online sulfide control.


2016 ◽  
Vol 75 (2) ◽  
pp. 247-254 ◽  
Author(s):  
F. Friedrichs ◽  
K. U. Rudolph ◽  
Bich Hanh Nguyen ◽  
D. Meinardi ◽  
W. Genthe ◽  
...  

The inhibition of activated sludge respiration is one of the most important parameters for monitoring wastewater toxicity. The main objective of this study was to improve respiration inhibition testing in order to protect the biological degradation within the aerobic process in a wastewater treatment plant more efficiently. In order to influence the sensitivity of the testing bacteria, two different nutrient solutions were selected for biological testing, synthetic wastewater according to ISO 8192 and NaAc (sodium acetate). The effects of the nutrient solutions on heavy metal speciation and their respiration inhibition were investigated. The toxicants Zn(II), Cu(II), Cr(VI) and 3,5 DCP (3,5-dichlorophenol) were used as standards to determine toxicities and to study the influence of nutrient solutions. Results have shown that NaAc as a nutrient solution sensitized the respiration inhibition test up to a factor of 7.7. Furthermore, an oxidation reduction potential electrode can be used as an alternative tool to verify the results obtained with an oxygen sensor.


1989 ◽  
Vol 21 (10-11) ◽  
pp. 1209-1223 ◽  
Author(s):  
J. Charpentier ◽  
H. Godart ◽  
G. Martin ◽  
Y. Mogno

The control of aeration by measuring the oxidation reduction potential (ORP) of activated sludge, conducted at the YFFINIAC (West of France) sewage plant in 1983, showed this type of regulation to be attractive in that it can optimize energy costs and perfect the removal of carbonaceous and nitrogenous pollutants (CHARPENTIER et al, 1987). From a practical point of view, this new, inexpensive means of regulation has moreover proved easier to implement than the method based on measuring Dissolved Oxygen (D.O.). Before implementingthis process, we undertoook a pilot study that enabled us to make more accurate the ORP values for activated sludge that must be observed in order to achieve the satisfactory removal of carbonaceous and nitrogen pollutants. Furthermore, the ORP readings revealed points of inflection that can be used for regulation purposes. These have been related to the disappearance either of the ammonia or the nitrates with release of phosphates. The experience gained with 7 ORP regulating systems, most of them in operation now for several years, and installed in works with vastly different characteristics, shows that the range of ORP values used corresponds to the pilot-scale experiments. It also shows the attractive features of the ORP signal, compared with that of D.O., when used for the regulation and interpretation of the phenomena involved in the biological treatment. This type of regulation leads to improvements in the annual electricity balance, expressed in terms of kWh v. kg of treated BOD5, and has proved to be compatible with a programmed shutdown of the aerators during the winter peak hours when the tariff per kWh is particularly expensive. In conclusion, the diversity of experiments on site has largely contributed towards the definition of those practical methods upon which depends the success of the system.


1994 ◽  
Vol 30 (6) ◽  
pp. 91-100 ◽  
Author(s):  
Ewa Lie ◽  
Thomas Welander

The influence of low concentrations of dissolved oxygen (DO) and the oxidation-reduction potential (ORP) on the denitrification activity of activated sludge has been studied in batchwise experiments. The ORP was maintained at different levels by automatic titration with air and the denitrification activity was determined by following the disappearance of nitrate. Oxygen was found to have a negative effect on denitrification even at lower concentrations than can be measured with conventional oxygen probes (<0.1 mg/L). The ORP was found to be a useful indicator of the DO concentration at this low level and the denitrification rate was found to decrease linearly with increasing ORP. However, the effect of the ORP on denitrification differed between sludges from different treatment plants. A linear relationship was also found between the ORP and the DO concentration in the region of measurable DO concentrations. Extrapolation of this straight line into the region where DO was under the detection limit indicated that oxygen exerts an inhibitory effect on denitrification at such low concentrations as a few μg/L.


Sign in / Sign up

Export Citation Format

Share Document