Role of irrigation and wastewater reuse: comparison of subsurface irrigation and furrow irrigation

2004 ◽  
Vol 50 (2) ◽  
pp. 61-68 ◽  
Author(s):  
C. Choi ◽  
I. Song ◽  
S. Stine ◽  
J. Pimentel ◽  
C. Gerba

Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.

2021 ◽  
Vol 8 (01) ◽  
Author(s):  
D K SINGH ◽  
ANANT BAHADUR ◽  
S NS CHAURASIA ◽  
SHEKHAR SINGH

Tomato is one of the important vegetable crops for nutrition security. The vegetables respond very well to proper irrigation water management towards increasing yield. A study on response of tomato under subsurface drip irrigation (SDI) with laterals placed at 5 cm, 10 cm and 15 cm depth below soil surface was carried out in inceptisols at ICAR- Indian Institute of Vegetable Research, Varanasi. It was found that soil water content variation was less and more favorable within top 30 cm depth of soil profile under SDI with lateral placed at 10 cm depth below soil surface. The maximum yield of tomato 52.85 t/ha was realized under SDI with lateral placed at 10 cm depth below soil surface followed by yield under 15 cm and 5 cm depth of lateral placement. It was 14.67% higher than the surface drip irrigation. The lowest yield of tomato was recorded 46.09 t/ha with surface drip irrigation. Maximum water use efficiency 1.968 t/ha-cm was obtained with SDI lateral placed at 10 cm depth below soil surface. To realize maximum yield and water use efficiency of tomato, SDI laterals could be placed at 10 cm depth below soil surface.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 662e-662 ◽  
Author(s):  
R.K. Striegler ◽  
G.T. Berg ◽  
M. Rothberg ◽  
D. Zoldoske

Using subsurface drip irrigation (SDI) is increasing in California vineyards. Reports from growers indicate increased yield, increased water-use efficiency, enhanced soil pest control, and reduced canopy disease pressure for SDI when compared to aboveground drip irrigation (AGDI). However, little information is available in the literature regarding this relatively new irrigation technology for grapes and other perennial crops. A long-term trial was established to evaluate the performance of AGDI and SDI in a mature `Thompson Seedless' raisin vineyard. Portions of a furrow irrigated vineyard block were converted to AGDI and SDI before budburst in 1993. Vine performance, water use, and irrigation system performance data are being collected. As part of this trial, changes in root distribution were examined after harvest in Nov. 1995. Treatments included AGDI, SDI, and furrow irrigation. Root distribution was quantified using the trench profile method. Trenches were opened perpendicular to the row and ≈30 cm from the vine. Roots were mapped along the profile wall using a 1 × 1 m frame, which was divided into one hundred 10 × 10 cm sections. Roots were counted and categorized into four size classes: small (<2 mm), medium (2 to 5 mm), large (5 to 12 mm), and very large (>12 mm). Root distribution differed significantly for AGDI, SDI, and furrow irrigation. The type of irrigation used had the greatest impact on small roots. SDI had more small roots and total roots than AGDI or furrow irrigation. High root densities were observed near the emitter under AGDI and SDI. In addition, both drip irrigation treatments had higher root density near the soil surface than furrow irrigation. Root intrusion was not observed in the SDI treatment.


HortScience ◽  
2015 ◽  
Vol 50 (9) ◽  
pp. 1312-1318 ◽  
Author(s):  
Clinton C. Shock ◽  
Erik B.G. Feibert ◽  
Alicia Riveira ◽  
Lamont D. Saunders

Onion (Allium cepa) plant population is an important factor in total yield and bulb size, both of which can influence economic return to growers. Different onion bulb marketing opportunities influence the plant populations that growers should target. With the transition from furrow irrigation to a drip irrigation system, growers have doubts as to the onion population that should be planted to assure favorable economic outcomes. Onions were grown on silt loam at the Oregon State University Malheur Experiment Station, Ontario, OR in 2011 and 2012 following bread wheat (Triticum aestivum L.) each year. Long-day onion cultivars Vaquero, Esteem, Barbaro, and Sedona were planted heavily and thinned to nominal plant populations between 222,000 and 593,000 plants/ha under furrow irrigation, subsurface drip irrigation, and “intense bed” subsurface drip irrigation. The intense bed configuration had 50% more rows of onions with three drip tapes per 1.94-m bed instead of two tapes. The experiment had a randomized complete block split-split-plot design with six replicates. Irrigation systems were the main plots, cultivars the split plots, and plant populations the split-split plots. Onion yield and grade responses to plant population for each cultivar and each planting system were determined by regression of yield and grade on the actual onion plant stands. In general, there were few differences among irrigation systems or interactions among irrigations systems, cultivars, and plant populations. Averaging over cultivars, total and marketable bulb yield out of storage increased with plant population, whereas the bulb diameters decreased with plant population. Average marketable yield was 119 Mg⋅ha−1 over the 2 years. Average yield of colossal bulbs >102 mm in diameter decreased with increasing plant population. In 2011, estimated gross economic return increased linearly with plant population, offset in part by increasing seed cost. In 2012, estimated economic return responded quadratically to plant population with maximum return of $45,357/ha at 419,000 plants/ha.


1992 ◽  
Vol 2 (1) ◽  
pp. 16-22 ◽  
Author(s):  
C. J. Phene ◽  
R.B. Hutmacher ◽  
K.R. Davis

Processing tomato is an important crop in California, where ≈ 100,000 ha is grown annually. In the past, processing tomatoes have been irrigated mostly by sprinkler and furrow irrigation, although several tests have been conducted with drip irrigation, and a few growers are using subsurface drip irrigation. Yields of tomato have been shown to be sensitive to water management when the amount of irrigation water closely matches plant water use. Tomatoes have been identified as susceptible to drought stress and waterlogging at both ends of the furrow irrigation cycle. Subsurface drip irrigation is a relatively new method in which drip irrigation laterals are buried permanently 20 to 60 cm below the soil surface. This method has provided the control and uniformity of water and fertilizer distribution necessary to maximize the yield of processing tomatoes. A computerized control system maintains nearly constant soil water and nutrient concentration in the root zone by irrigating and fertilizing frequently, thus avoiding small water and nutrient stresses, especially during the critical period between first and peak bloom. During the maturation and ripening stage, irrigation and nutrient concentrations can be adjusted to increase soluble solids and to adjust the maturation rate to coincide with the harvest schedule. Maximum yield levels can be obtained when nearly all the fertilizers (N, P, and K) are injected precisely in time and space through the drip irrigation system to meet the crop nutrient requirement. Water-use efficiency (WUE), defined as the ratio of yield: unit of water used by the plant, can be maximized by using this precise irrigation and fertilization technique. Yields >200 t·ha-1 of red tomatoes were achieved in large field plot research, and commercial yields of 150 t·ha-1 were achieved in large-scale field applications with a lesser degree of control. Therefore, we predict that with further fine-tuning, commercial yields of 200 tons of processing tomatoes/ha could be achieved using a subsurface drip irrigation system with accurate water and fertility management.


2019 ◽  
Vol 25 (9) ◽  
pp. 41-53
Author(s):  
Heba Najem Abid ◽  
Maysoon Basheer Abid

Soil wetted pattern from a subsurface drip plays great importance in the design of subsurface drip irrigation (SDI) system for delivering the required water directly to the roots of the plant. An equation to estimate the dimensions of the wetted area in soil are taking into account water uptake by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, three soil textures namely loamy sand, sandy loam, and loam soil were used with three different types of crops tomato, pepper, and cucumber, respectively, and different values of drip discharge, drip depth, and initial soil moisture content were proposed. The soil wetting patterns were obtained at every thirty minutes for a total time of irrigation equal to three hours. Equations for wetted width and depth were predicted and evaluated by utilizing the statistical parameters (model efficiency (EF), and root mean square error (RMSE)). The model efficiency was more than 95%, and RMSE did not exceed 0.64 cm for three soils. This shows that evolved formula can be utilized to describe the soil wetting pattern from SDI system with good accuracy.      


2010 ◽  
Author(s):  
Freddie R Lamm ◽  
Paul D Colaizzi ◽  
James P Bordovsky ◽  
Todd P Trooien ◽  
Juan Enciso-Medina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document