Subsurface Drip Irrigation as a Weed Management Tool for Conventional and Conservation Tillage Tomato (Lycopersicon esculentumMill.) Production in Semi-Arid Agroecosystems

2007 ◽  
Vol 31 (2) ◽  
pp. 91-112 ◽  
Author(s):  
Anil Shrestha ◽  
Jeffrey P. Mitchell ◽  
W. Thomas Lanini
2019 ◽  
Vol 38 (1) ◽  
pp. 105-115 ◽  
Author(s):  
F. Valentín ◽  
P. A. Nortes ◽  
A. Domínguez ◽  
J. M. Sánchez ◽  
D. S. Intrigliolo ◽  
...  

2004 ◽  
Vol 50 (2) ◽  
pp. 61-68 ◽  
Author(s):  
C. Choi ◽  
I. Song ◽  
S. Stine ◽  
J. Pimentel ◽  
C. Gerba

Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.


2006 ◽  
Vol 20 (4) ◽  
pp. 831-838 ◽  
Author(s):  
Kipp F. Sutton ◽  
W. Thomas Lanini ◽  
Jefferey P. Mitchell ◽  
Eugene M. Miyao ◽  
Anil Shrestha

A field experiment was conducted near Davis, CA, during the 2003 and 2004 summer growing seasons to compare weed control, yield, and fruit quality in different irrigation and tillage systems in processing tomato. Trial design was a subplots with the main plots as subsurface drip irrigation or furrow irrigation, subplots were standard tillage or conservation tillage, and sub-subplots were herbicide or no herbicide. The hypothesis was that subsurface drip irrigation could limit surface soil wetting and thus inhibit germination and growth of weeds equal to or better than standard tillage and/or herbicides. In both 2003 and 2004, weed densities in the subsurface drip irrigation treatments were over 98% lower than the levels in furrow irrigation treatments. In addition, weed densities were lower in the subsurface drip–conservation till–no herbicide treatment than in any of the furrow irrigation treatments, including the furrow irrigation–standard tillage–herbicide treatments. The time required for a hand-hoeing crew to remove weeds was 5 to 13 times greater in furrow irrigation treatments compared to subsurface drip irrigation treatments. Weed biomass on beds at tomato harvest was 10 to 14 times greater in the furrow systems as compared to the subsurface drip irrigation systems. These results demonstrate the effectiveness of subsurface drip irrigation in controlling weed germination and growth, compared to tillage or herbicide applications. Tomato yield was higher in the subsurface drip irrigation treatment compared to furrow irrigation in 2004. Herbicide treatment increased yield in 2004, but only in the furrow irrigation treatment in 2003. Fruit brix level was not related to treatment in 2003, but was lower in the subsurface drip irrigation plots in 2004. These results indicate that subsurface drip irrigation can reduce weed competition in conservation tillage systems, without requiring herbicide applications.


2014 ◽  
Vol 666 ◽  
pp. 375-378
Author(s):  
Feng Liu ◽  
Guang Hua Wu ◽  
Ming Yu Zhang ◽  
Qiang Wang

Jilin Provincial Academy of Agricultural Machinery initiated studies in 2000 to develop the methodology for successful application of subsurface drip irrigation (SDI) for corn production on the deep silt loam soils of the northeast plains, China. Irrigation water use for corn can be reduced by 37–52% when using SDI compared with more traditional forms of irrigation in the region. Irrigation frequency has not been a critical issue when SDI is used for corn production on the deep silt loam soils of the region. A dripline spacing of 1.5 m has been found to be most economical for corn grown in 0.76 m spaced rows. Nitrogen fertigation was a very effective management tool with SDI, helping to maximize corn grain yield, while obtaining high efficiencies of nitrogen and water use. The research SDI systems have been utilized since 2000 without replacement or major degradation. SDI systems lasting 10–20 years are cost competitive for corn production with the more traditional forms of irrigation in the northeast plains for certain field sizes.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 540 ◽  
Author(s):  
Hiba Ghazouani ◽  
Giovanni Rallo ◽  
Amel Mguidiche ◽  
Basma Latrech ◽  
Boutheina Douh ◽  
...  

The objective of this paper was to assess the performance of Hydrus-2D model to simulate the effects of different on-farm irrigation strategies applied on potato crop. The ability of the model to simulate the stress coefficient (Ks), obtained as the ratio between actual and maximum transpiration, and to define the productive function of potato crop under the semi-arid conditions of central Tunisia were also evaluated. Experiments were carried out on potato crop under full (FI) and deficit irrigation (DI) and two different water qualities supplied by means of a subsurface drip irrigation system. Results evidenced that the model, despite some discrepancies locally observed, can fairly accurately predict soil water contents and electrical conductivity around buried emitters. Furthermore, under water and salt stress conditions, “measured” Ks, based on crop water stress index (CWSI) obtained on thermal images, resulted in a good correlation with the corresponding estimated by the model (R2 = 0.8). The database collected during the three growth seasons also allowed the definition of the crop productive function represented by a linear relationship between the relative yield loss and Ks. This function represents a useful guidelines for the sustainable use of irrigation water in countries characterized by a semi-arid climate and a limited availability of water for irrigation.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
John W. Sij ◽  
David G. Bordovsky ◽  
David L. Jones ◽  
Jeffery E. Slosser

2002 ◽  
Vol 66 (1) ◽  
pp. 178 ◽  
Author(s):  
Thomas L. Thompson ◽  
Thomas A. Doerge ◽  
Ronald E. Godin

Sign in / Sign up

Export Citation Format

Share Document