Methane production and solids destruction in an anaerobic solid waste reactor due to post-reactor caustic and heat treatment

2006 ◽  
Vol 53 (8) ◽  
pp. 33-41 ◽  
Author(s):  
T.D. DiStefano ◽  
A. Ambulkar

This study was undertaken to determine the feasibility of caustic and heat treatment of sludge from a dry anaerobic reactor (DAR) with respect to increased methane production and solids destruction. The DAR was operated semi-continuously at 55 °C on sized-reduced municipal solid waste at a solids retention time of 15 days. A respirometer was employed to monitor the extent and rate of methane production from anaerobic biodegradation of DAR sludge that was treated with caustic and heat. Results indicate that caustic and heat treatment at 50 °C and 175 °C increased methane production by 22% and 52%, respectively. Also, volatile solids destruction increased from 46% to 58% and 83%, respectively. Based on these results, economic analysis for a full-scale 105 kg/d facility suggests that annual project revenue for 50 °C and 175 °C treatment is estimated at $21,000 and $445,000, respectively.

2021 ◽  
Vol 151 ◽  
pp. 106137
Author(s):  
Yiran Zhou ◽  
Kangyi Huang ◽  
Xiuyao Jiao ◽  
Nemanja Stanisavljevic ◽  
Lei Li ◽  
...  

2012 ◽  
Vol 65 (3) ◽  
pp. 403-409 ◽  
Author(s):  
A. Ya. Vanyushina ◽  
Yu. A. Nikolaev ◽  
A. M. Agarev ◽  
M. V. Kevbrina ◽  
M. N. Kozlov

The process of anaerobic thermophilic digestion of municipal wastewater sludge with a recycled part of thickened digested sludge, was studied in semi-continuous laboratory digesters. This modified recycling process resulted in increased solids retention time (SRT) with the same hydraulic retention time (HRT) as compared with traditional digestion without recycling. Increased SRT without increasing of HRT resulted in the enhancement of volatile substance reduction by up to 68% in the reactor with the recycling process compared with 34% in a control conventional reactor. Biogas production was intensified from 0.3 L/g of influent volatile solids (VS) in the control reactor up to 0.35 L/g VS. In addition, the recycling process improved the dewatering properties of digested sludge.


2021 ◽  
Vol 47 (3) ◽  
pp. 465-481
Author(s):  
Arif Mohammad ◽  
Venkata Siva Naga Sai Goli ◽  
Agnes Anto Chembukavu ◽  
Devendra Narain Singh

Biochemical decomposition of municipal solid waste (MSW) in landfills leads to the generation of leachate, gases and humus substances. In this context, a methodology to assess D ecomposition of MSW, designated as DecoMSW, has been developed; based on a series of tests conducted on samples of the fresh MSW and those retrieved from the active bioreactor landfill (BLF) cells of age from 13 to 48 months. Furthermore, spatial and temporal variation in the (i) physical (composition) and (ii) chemical (pH, volatile solids, total organic carbon, elemental analysis, ammonium and nitrate-nitrogen, biomethanation potential, lignocellulosic content) characteristics of the MSW samples exhumed from the landfill have been established. Finally, these characteristics were correlated vis-à-vis the respective values of the fresh MSW. From this exercise, it has been observed that except for nitrate-nitrogen, all other chemical parameters of MSW decrease exponentially with time until 20 months, and beyond that, they remain constant, which is an indication of stabilization of MSW. In short, it has been demonstrated that DecoMSW is instrumental in assessing the state of decomposition of MSW with respect to time in the BLF and facilitates initiation of the landfill mining activities.


Author(s):  
Mario F. Castellón-Zelaya ◽  
Simón González-Martínez

Abstract The silage of the organic fraction of municipal solid waste (OFMSW) is a common practice in biogas plants. During silage, fermentation processes take place, affecting the later methanisation stage. There are no studies about how OFMSW silage affects methane production. This work aimed to determine the effects of silage (anaerobic acid fermentation) at different solids concentrations and temperatures on methane production. OFMSW was ensiled at 20, 35, and 55 °C with total solids (TS) concentrations of 10, 20, and 28% for 15 days. The ensiled OFMSW was then tested for methane production at the substrate to inoculum ratios (S/I) of 0.5, 1.0, and 1.5. Independently of the temperature, the production of the metabolites during silage increases with decreasing solids concentration. The highest metabolites production were lactic acid, ethanol, and acetic acid, representing together 95% of the total. Methane production from ensiled OFMSW at 10% solids concentration shows, under every tested condition, better methane production than from fresh OFMSW. Ensiled OFMSW produces more methane than fresh OFMSW, and methane production was highest at 35 °C.


Sign in / Sign up

Export Citation Format

Share Document