Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products

2006 ◽  
Vol 53 (8) ◽  
pp. 109-117 ◽  
Author(s):  
M. Carballa ◽  
F. Omil ◽  
A.C. Alder ◽  
J.M. Lema

Many novel treatment technologies, usually representing a pre-treatment prior to the biological degradation process, have been developed in order to improve the recycling and reuse of sewage sludge. Among all the methods available, a chemical (alkaline) and a thermal treatment have been considered in this study. The behaviour of 13 substances belonging to different therapeutic classes (musks, tranquillisers, antiepileptic, anti-inflammatories, antibiotics, X-ray contrast media and estrogens) has been studied during the anaerobic digestion of sewage sludge combined with these pre-treatments (advanced operation) in comparison with the conventional process. Two parameters have been analysed: the temperature (mesophilic and thermophilic conditions) and the sludge retention time. While organic matter solubilization was higher with the alkaline process (55–80%), no difference between both pre-treatments was observed concerning volatile solids solubilization (up to 20%). The removal efficiencies of solids and organic matter during anaerobic digestion ranged from 40–70% and 45–75%, respectively. The higher removal efficiencies of pharmaceuticals and personal care products were achieved for the antibiotics, Naproxen and the natural estrogens (>80%). For the other compounds, the values were in the range 20–70%, except for Carbamazepine, which was not removed at any condition tested.

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


Chemosphere ◽  
2007 ◽  
Vol 67 (7) ◽  
pp. 1444-1452 ◽  
Author(s):  
Marta Carballa ◽  
Garbiñe Manterola ◽  
Luis Larrea ◽  
Thomas Ternes ◽  
Francisco Omil ◽  
...  

2007 ◽  
Vol 41 (10) ◽  
pp. 2139-2150 ◽  
Author(s):  
Marta Carballa ◽  
Francisco Omil ◽  
Thomas Ternes ◽  
Juan M. Lema

2020 ◽  
Author(s):  
Salar Siami ◽  
Behnoush Aminzadeh ◽  
Razieh Karimi ◽  
Seyed Mostafa Hallaji

Abstract Background This study investigated the feasibility of enhancing anaerobic digestion of sewage sludge with triple, dual, and individual pre-treatment of waste activated sludge with heat, alkalinity, and hydrogen peroxide. These pre-treatments disrupt sludge flocs, organisms’ cell walls, extracellular polymeric substance, and intracellular organic matter, which increase biodegradability and hydrolysis rate of organic matter. In addition, the influence of various variables on methane production was analyzed using the response surface methodology with the quadratic model. Eventually, an optimized temperature and chemical concentration for the highest methane production and lowest chemical usage is suggested.Results The highest amount of methane production was obtained from the sludge pretreated with triple pretreatment (heat (90°C), alkalinity (pH=12), and hydrogen peroxide (30 mg H2O2 /g TS)), which had better performance with 96% higher than that of the control sample with Temperature of 25°C approximately and alkalinity of pH=8. Response surface methodology with the quadratic model was also used for analyzing the influence of temperature, pH, and hydrogen peroxide concentration on anaerobic digestion efficiency. It was revealed that the optimized temperature, pH, and hydrogen peroxide concentration for maximizing methane production and solubilisation of organic matter and minimizing thermal energy and chemical additives of the pre-treatments are 83.2°C, pH=10.6 and 34.8 mg H2O2 /g TS, respectively, has the desirability of 0.67.Conclusion This study reveals that triple pre-treatment of waste activated sludge performs better than dual and individual pre-treatment, Respectively. The enhanced methane production can be used as an important renewable energy resource in wastewater treatment plants for producing electrical and thermal energy. Furthermore, exploiting a higher amount of methane in the anaerobic digestion stage decreases methane emission to the atmosphere in dewatering and landfilling stages and enhances the quality of digested sludge, bringing about environmentally friendly and economically attractive sewage sludge treatment process.


2010 ◽  
Vol 217 (1-4) ◽  
pp. 127-134 ◽  
Author(s):  
Deborah L. Carr ◽  
Audra N. Morse ◽  
John C. Zak ◽  
Todd A. Anderson

2010 ◽  
Vol 62 (10) ◽  
pp. 2450-2458 ◽  
Author(s):  
Angela Yu-Chen Lin ◽  
Cheng-Fan Lin ◽  
Yu-Ting Tsai ◽  
Hank Hui-Hsiang Lin ◽  
Jie Chen ◽  
...  

Pharmaceuticals and personal care products (PPCPs) constitute a class of chemicals of emerging concern due to the potential risks they pose to organisms and the environment, even at low concentrations (ng/L). Recent studies have found that PPCPs are not efficiently removed in secondary wastewater treatment plants (WWTPs). This study has: (1) simultaneously investigated the occurrence of sixty-one PPCPs using solid phase extraction and high-performance liquid chromatography-tandem mass spectrometry, (2) evaluated removal efficiencies of target PPCPs in six WWTPs that discharge effluents into major Taiwanese rivers, and lastly (3) examined matrix interference during analysis of target PPCPs in water samples. The twenty target PPCPs were chosen for their high detection frequencies, high influent concentrations, and stability during wastewater treatment processes. Caffeine and acetaminophen were detected at the highest concentrations (as high as 24,467 and 33,400 ng/L) and were effectively removed (both >96%); other PPCPs were detected in the high ng/L range but were not effectively removed. Matrix interference (by ion suppression or enhancement) during the analysis resulted in underestimation of the removal efficiencies of erythromycin-H2O, cefazolin, clarithromycin, ibuprofen, diclofenac, clofibric acid and gemfibrozil.


Sign in / Sign up

Export Citation Format

Share Document