Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times

2012 ◽  
Vol 66 (12) ◽  
pp. 2562-2569 ◽  
Author(s):  
F. B. Queiroz ◽  
E. M. F. Brandt ◽  
S. F. Aquino ◽  
C. A. L. Chernicharo ◽  
R. J. C. F. Afonso

This work investigated the occurrence of pharmaceuticals and endocrine disrupting compounds (EDCs) in raw sewage (from Belo Horizonte city, Minas Gerais state, Brazil) and assessed their behavior in demo-scale upflow anaerobic sludge blanket reactors (UASB reactors) operated at different hydraulic retention times (HRT). The dissolved concentration of the studied micropollutants in the raw and treated sewage was obtained using solid phase extraction (SPE) followed by analysis in a liquid chromatography system coupled to a hybrid high resolution mass spectrometer consisting of an ion-trap and time of flight (LC-MS-IT-TOF). The natural (estradiol) and synthetic (ethinylestradiol) estrogens were hardly detected; when present, however, their concentrations were lower than the method quantification limits. The concentrations of bisphenol A and miconazole in raw sewage were similar to that reported in the literature (around 200 ng L−1 and hardly detected, respectively). The antibiotics sulfamethoxazole (median 13.0 ng L−1) and trimethoprim (median 61.5 ng L−1), and the other pharmaceutical compounds (diclofenac and bezafibrate, with median 99.9 and 94.4 ng L−1, respectively) were found in lower concentrations when compared with reports in the literature, which might indicate a lower consumption of such drugs in Brazil. The UASB reactors were inefficient in the removal of bisphenol A, and led to an increased concentration of nonylphenol in the effluent. The anaerobic reactors were also inefficient in the removal of diclofenac, and led to a partial removal of bezafibrate; whereas, for sulfamethoxazole there seemed to be a direct relationship between the HRT and removal efficiencies. For trimethoprim the sludge retention time (SRT) seemed to play an important role, although it was only partially removed in the UASB reactors.

2019 ◽  
Vol 80 (3) ◽  
pp. 418-425 ◽  
Author(s):  
T. Bressani-Ribeiro ◽  
L. A. Chamhum-Silva ◽  
C. A. L. Chernicharo

Abstract There are hundreds of full-scale upflow anaerobic sludge blanket (UASB) reactors in operation in various parts of the tropical world, notably in India and Latin America, Brazil being the holder of the largest park of anaerobic reactors for sewage treatment in the world. Despite the recognized advantages of UASB reactors, there are problems that have prevented their maximum operational performance. Neglecting the existence and delaying the solution of these challenges can jeopardize the important advances made to date, impacting the future of anaerobic technology in Brazil and in other countries. This work aims to evaluate the operational performance of five full-scale UASB reactors in Brazil, taking into account a monitoring period ranging between two and six years. The main observed design, construction, and operational constraints are discussed. Some outlooks for important upcoming developments are also provided, considering that most of the observed drawbacks can be tackled without significant increases on reactor costs.


2005 ◽  
Vol 51 (12) ◽  
pp. 91-97 ◽  
Author(s):  
M. von Sperling ◽  
R.K.X. Bastos ◽  
M.T. Kato

Ponds following anaerobic reactors, such as Upflow Anaerobic Sludge Blanket (UASB) reactors, have been termed polishing ponds in the literature. The present paper analyses the removal of E. coli and helminth eggs in five UASB–polishing pond systems in Brazil. Since there were ponds in series, the total number of ponds was 10. The ponds had average retention times varying from 2 to 21 days, and depths ranging from 0.40 to 2.00 m. The shallow ponds in series, even with low retention times, were able to produce effluents complying with the coliform WHO guidelines for unrestricted irrigation (≤1000 MPN/100 ml). An equation for the coliform decay coefficient was proposed: Kb (dispersed flow)=0.710 H−0.955 (20 °C). The equation highlights the inverse relationship between the pond depth and the decay coefficient. All polishing pond systems were able to produce effluents with helminth eggs concentrations predominantly equal to zero, and satisfying the WHO guidelines for unrestricted and restricted irrigation (≤1 egg/L, arithmetic mean). The approximate range of helminth eggs removal efficiency was predicted satisfactorily.


2004 ◽  
Vol 49 (11-12) ◽  
pp. 69-76 ◽  
Author(s):  
J.E. Schmidt ◽  
D.J. Batstone ◽  
I. Angelidaki

Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m-3 reactor day-1, with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process.


2001 ◽  
Vol 44 (4) ◽  
pp. 79-82 ◽  
Author(s):  
L. F. Lopes ◽  
P. R. Koetz ◽  
M. S. Santos

Parboiled rice industry is one of main food industries in the south of Brazil. The main parts of the processing are the humidification and gelatinization of the grain. This procedure increases the productivity and nutritive and cooking values of the product. Some of these industries in the region utilize upflow anaerobic sludge blanket (UASB) reactors as a biological treatment for carbon removal. For nitrogen removal, the proposed system aims to eliminate an extra denitrification reactor, making this step in the top of the UASB, an anoxic zone of the reactor. Nitrification was performed in aerated mixed reactor of 3,6 L. A fraction of the NR was recycled in the top of UASB reactor above the sludge blanket. Recycled ratio varied from 0; 1:0.5; 1:1.0; to 1:1.5. The maximum removal efficiency of NTK was 80%. The results confirm the viability of the proposed system for denitrification.


2014 ◽  
Vol 81 (3) ◽  
pp. 831-839 ◽  
Author(s):  
Liguang Zhou ◽  
Haiying Yu ◽  
Guomin Ai ◽  
Bo Zhang ◽  
Songnian Hu ◽  
...  

ABSTRACTMethanosaetaspp. are widely distributed in natural environments, and their filamentous cells contribute significantly to sludge granulation and the good performance of anaerobic reactors. A previous study indicated thatMethanosaeta harundinacea6Ac displays a quorum sensing-regulated morphological transition from short to long filaments, and more acetate is channeled into methane production in long filaments, whereas more is channeled into biomass synthesis in short filaments. Here, we performed transcriptomic and physiological analysis to gain insights into active methanogenesis in long filaments ofM. harundinacea6Ac. Both RNA sequencing (RNA-seq) and quantitative reverse transcription-PCR indicated that transcription of the genes involved in aceticlastic methanogenesis and energy metabolism was upregulated 1.2- to 10.3-fold in long filaments, while transcription of the genes for the methyl oxidative shunt was upregulated in short filaments. [2-13C]acetate trace experiments demonstrated that a relatively higher portion of the acetate methyl group was oxidized to CO2in short filaments than in long filaments. The long filaments exhibited higher catalase activity and oxygen tolerance than the short ones, which is consistent with increased transcription of the oxidant-scavenging genes. Moreover, transcription of genes for cell surface structures was upregulated in the long filaments, and transmission electron microscopy revealed a thicker cell envelope in the filaments. RNA-seq determined a >2-fold upregulation of a variety of antistress genes in short filaments, like those encoding chaperones and DNA repair systems, which implies that the short filaments can be stressed. This study reveals the genetic basis for the prevalence of the long filamentous morphology ofM. harundinaceacells in upflow anaerobic sludge blanket granules.


2012 ◽  
Vol 66 (6) ◽  
pp. 1239-1246 ◽  
Author(s):  
Fernando Augusto Lopes de Assunção ◽  
Marcos von Sperling

This study aimed at determining the influence of ammonia volatilization on nitrogen removal in polishing (maturation) ponds treating sanitary effluent from upflow anaerobic sludge blanket (UASB) reactors in the city of Belo Horizonte, Brazil. An apparatus for the capture and absorption of volatilized ammonia in three polishing ponds in series was installed. Volatilized ammonia was captured by a chamber on the surface of the ponds and dissolved in boric acid solution, in order to estimate the amount of ammonia per unit surface area of each pond. Low rates of volatilization, below 0.2 kg/ha.d, in about 75% of samples from all the ponds, were observed. The mass balance of ammonia nitrogen of the ponds showed that the volatilization represented only about 2% of the total removal of nitrogen from the polishing ponds. The results obtained suggest that ammonia volatilization was a mechanism of little importance in nitrogen removal in the investigated polishing ponds.


1995 ◽  
Vol 31 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Nina Christiansen ◽  
Hanne V. Hendriksen ◽  
Kimmo T. Järvinen ◽  
Birgitte K. Ahring

Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules.


Sign in / Sign up

Export Citation Format

Share Document