A mechanistic model for fate and removal of estrogens in biological nutrient removal activated sludge systems

2012 ◽  
Vol 65 (6) ◽  
pp. 1130-1136 ◽  
Author(s):  
M. Lust ◽  
J. Makinia ◽  
H. D. Stensel

Two estrogen fate and transformation models were integrated with a comprehensive activated sludge model (ASM) to predict estrogen removal based on biomass and solids production. Model predictions were evaluated against published full-scale plant data as well as results from a laboratory-scale sequencing batch reactor (SBR) fed synthetic wastewater. The estrogen fate model relating the rate of total estrogen degradation to soluble estrogen concentrations successfully predicted estrogen removals when compared with measured concentrations. Model fit 17α-ethinylestradiol (EE2) biodegradation rate constant was 19 to 43% of the estrone (E1) value and 31 to 72% of the 17β-estradiol (E2) value.

AIChE Journal ◽  
2009 ◽  
Vol 56 (6) ◽  
pp. 1626-1638 ◽  
Author(s):  
Bing-Jie Ni ◽  
Wen-Ming Xie ◽  
Shao-Gen Liu ◽  
Han-Qing Yu ◽  
Yi-Ping Gan ◽  
...  

2009 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Xiao-ming Li ◽  
Dong-bo Wang ◽  
Qi Yang ◽  
Wei Zheng ◽  
Jian-bin Cao ◽  
...  

It was occasionally found that a significant nitrogen loss in solution under neutral pH value in a sequencing batch reactor with a single-stage oxic process using synthetic wastewater, and then further studies were to verify the phenomenon of nitrogen loss and to investigate the pathway of nitrogen removal. The result showed that good performance of nitrogen removal was obtained in system. 0–7.28 mg L−1 ammonia, 0.08–0.38 mg L−1 nitrite and 0.94–2.12 mg L−1 nitrate were determined in effluent, respectively, when 29.85–35.65 mg L−1 ammonia was feeding as the sole nitrogen source in influent. Furthermore, a substantial nitrogen loss in solution (95% of nitrogen influent) coupled with a little gaseous nitrogen increase in off-gas (7% of nitrogen influent) was determined during a typical aerobic phase. In addition, about 322 mg nitrogen accumulation (84% of nitrogen influent) was detected in activated sludge. Based on nitrogen mass balance calculation, the unaccounted nitrogen fraction and the ratio of nitrogen accumulation in sludge/nitrogen loss in solution were 14.6 mg (3.7% of nitrogen influent) and 0.89, respectively. The facts indicated that the essential pathway of nitrogen loss in solution in this study was excess nitrogen accumulation in activated sludge.


1999 ◽  
Vol 39 (6) ◽  
pp. 1-11 ◽  
Author(s):  
George A. Ekama ◽  
Mark C. Wentzel

Filamentous bulking and the long sludge age required for nitrification are two important factors that limit the wastewater treatment capacity of biological nutrient removal (BNR) activated sludge systems. A growing body of observations from full-scale plants indicate support for the hypothesis that a significant stimulus for filamentous bulking in BNR systems in alternating anoxic-aerobic conditions with the presence of oxidized nitrogen at the transition from anoxic to aerobic. In the DEPHANOX system, nitrification takes place externally allowing sludge age and filamentous bulking to be reduced and increases treatment capacity. Anoxic P uptake is exploited in this system but it appears that this form of biological excess P removal (BEPR) is significantly reduced compared with aerobic P uptake in conventional BNR systems. Developments in the understanding of the BEPR processes of (i) phosphate accumulating organism (PAO) denitrification and anoxic P uptake, (ii) fermentation of influent readily biodegradable (RB)COD and (iii) anaerobic hydrolysis of slowly biodegradable (SB)COD are evaluated in relation to the IAWQ Activated Sludge Model (ASM) No.2. Recent developments in BEPR research do not yet allow a significant improvement to be made to ASM No. 2 that will increase its predictive power and reliability and therefore it remains essentially as a framework to guide further research.


1994 ◽  
Vol 11 (1-4) ◽  
pp. 149-159 ◽  
Author(s):  
Kin-man Ho ◽  
Paul F. Greenfield ◽  
Linda L. Blackall ◽  
Peter R.F. Bell ◽  
Andre Krol

2017 ◽  
Vol 75 (11) ◽  
pp. 2639-2648 ◽  
Author(s):  
Yong Zhang ◽  
Wei-Li Jiang ◽  
Yang Qin ◽  
Guo-Xiang Wang ◽  
Rui-Xiao Xu ◽  
...  

This study aimed to investigate the organic removal efficiency and microbial population dynamics in activated sludge with pressurized aeration. The activated sludge was fed with synthetic wastewater composed of simple carbon source to avoid the effect of complex components on microbial communities. The pressurized acclimation process was conducted in a bench-scale sequencing batch reactor (SBR) under 0.3 MPa gage pressure. Another SBR was running in atmospheric environment as a control reactor, with the same operation parameters except for the pressure. Bacterial diversity was investigated by Illumina sequencing technology. The results showed that the total organic carbon removal efficiency of the pressurized reactor was significantly higher, while the mixed liquor suspended solids concentrations were much lower than those of the control reactor. Moderate pressure of 0.3 MPa had little effect on Alpha-diversity of bacterial communities due to the similar running conditions, e.g., feed water, solids retention time (SRT) and the cyclic change of dissolved oxygen (DO) concentrations. Although the relative percentage of the bacterial community changed among samples, there was no major change of predominant bacterial populations between the pressurized group and the control group. Pressurized aeration would have a far-reaching impact on microbial community in activated sludge when treating wastewaters being unfavorable to the dissolution of oxygen.


2013 ◽  
Vol 8 (1) ◽  
pp. 16-22

In this study two bench scale activated sludge systems were used, a CSTR and an SBR for the treatment of coke – oven wastewater. Both reactors were inoculated with activated sludge from a municipal wastewater treatment plant. At the first stages of operation, reactors were feed by a mixture of municipal wastewater and synthetic wastewater. Full acclimatization of the microorganisms to synthetic wastewater was achieved in 60 days. The operation of the reactors was divided into three distinct periods. The first period was characterized by the treatment of high organic but non-toxic synthetic wastewater. During this period COD and BOD5 removal efficiencies reached 95 and 98% respectively, in both reactors. Nutrient removal was better in the SBR reactor rather than in the CSTR. In the second period phenol was added in concentrations up to 300 mg l-1. Degradation of phenol started about the 20th day after its introduction to the reactors. In this period no effects of phenol to nutrient removal were observed, whereas the removal efficiency of organic matter in both reactors was slightly decreased. During the third period phenol concentrations of the influent were gradually increased to 1000 mg l-1, while cyanide and thiocyanite were added to the influent composition to concentrations reaching concentrations of 20 and 250 mg l-1 respectively. The composition of the influent of this period was a full assimilation of coke oven wastewater. Introduction of increased phenol concentrations along with cyanide compounds initiated irreversible effects on the activated sludge microfauna of the CSTR causing inherent problems to the treatment process, while SBR showed greater capacity to withstand and degrade toxic compounds. The beginning of this period was characterized by decreased settleability of the suspended solids as well as decrease of organic matter and nutrient removal efficiencies. Monitoring of the effluent characteristics during this period reported over 90% for organic load, 85% of nutrient removal and over 90% of phenol and cyanide removal in SBR, while the removal efficiencies for the CSTR were 75, 65 and 80% respectively.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 43-50 ◽  
Author(s):  
P. S. Barker ◽  
P. L. Dold

Results of model simulations indicate that without the assumption of COD loss, predictions of oxygen consumption and volatile suspended solids production are significantly over-estimated for biological excess phosphorus removal (BEPR) activated sludge systems (and to a lesser extent anoxic-aerobic systems). These systems apparently consume less oxygen and produce less volatile solids than aerobic systems for the same amount of COD removal. A general model for biological nutrient removal systems has recently been presented by Barker and Dold. Three mechanisms for COD loss are suggested, based on results of COD balances for different types of activated sludge system. Model simulation results with and without the assumption of COD loss are discussed, as well as the influence of influent COD composition on predictions of volatile suspended solids concentration/production and oxygen consumption.


Sign in / Sign up

Export Citation Format

Share Document