Difficulties and developments in biological nutrient removal technology and modelling

1999 ◽  
Vol 39 (6) ◽  
pp. 1-11 ◽  
Author(s):  
George A. Ekama ◽  
Mark C. Wentzel

Filamentous bulking and the long sludge age required for nitrification are two important factors that limit the wastewater treatment capacity of biological nutrient removal (BNR) activated sludge systems. A growing body of observations from full-scale plants indicate support for the hypothesis that a significant stimulus for filamentous bulking in BNR systems in alternating anoxic-aerobic conditions with the presence of oxidized nitrogen at the transition from anoxic to aerobic. In the DEPHANOX system, nitrification takes place externally allowing sludge age and filamentous bulking to be reduced and increases treatment capacity. Anoxic P uptake is exploited in this system but it appears that this form of biological excess P removal (BEPR) is significantly reduced compared with aerobic P uptake in conventional BNR systems. Developments in the understanding of the BEPR processes of (i) phosphate accumulating organism (PAO) denitrification and anoxic P uptake, (ii) fermentation of influent readily biodegradable (RB)COD and (iii) anaerobic hydrolysis of slowly biodegradable (SB)COD are evaluated in relation to the IAWQ Activated Sludge Model (ASM) No.2. Recent developments in BEPR research do not yet allow a significant improvement to be made to ASM No. 2 that will increase its predictive power and reliability and therefore it remains essentially as a framework to guide further research.

2002 ◽  
Vol 46 (1-2) ◽  
pp. 129-138 ◽  
Author(s):  
Z.-R. Hu ◽  
M.C. Wentzel ◽  
G.A. Ekama

In this paper the advantages and disadvantages of denitrifying PAOs (polyphosphat accumulating organisms) in conventional BNRAS (biological nutrient removal activated sludge) and external nitrification BNRAS (ENBNRAS) systems are evaluated, with experimental data exhibiting a range of anoxic P uptake from low (<10%) to very high (>60%). The results indicate that the specific denitrification rate of the PAOs on internally stored PHB COD is about 1/5th of that of the “ordinary” heterotrophic organisms on SBCOD, and the PAOs contribute little (maximum 20%) to the denitrification in BNRAS systems even when the anoxic P uptake is high (60% of the total P uptake). Considering the unpredictable nature of anoxic P uptake and the reduction in BEPR it causes compared with aerobic P uptake BEPR, it is concluded that anoxic P uptake does not add a significant advantage to the BNR system.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


1999 ◽  
Vol 39 (4) ◽  
pp. 45-53 ◽  
Author(s):  
H. M. van Veldhuizen ◽  
M. C. M. van Loosdrecht ◽  
F. A. Brandse

An activated sludge model for biological N- and P-removal was developed, which describes anoxic and aerobic P-uptake based on bacterial metabolism. This model was tested in practice on two wastewater treatment plants, which are BCFS®-processes, which contain activated sludge with a high fraction of denitrifying P-removing bacteria (DPB's). The model appeared to be able to give an adequate description of the performance of these treatment plants under different conditions. If the process parameters are well defined almost no calibration of the biokinetic parameters was necessary. In the simulation of Dalfsen wwtp, which has a complex control scheme, it was possible to give an adequate simulation of the control actions and the concentration profiles in a rather simple way, showing that detailed simulation of these controllers was not necessary. With the calibrated model it was possible to analyse bottlenecks and give suggestions for upgrading of the concerned treatments plants. The simulation results were used in decisions on investments.


1994 ◽  
Vol 11 (1-4) ◽  
pp. 149-159 ◽  
Author(s):  
Kin-man Ho ◽  
Paul F. Greenfield ◽  
Linda L. Blackall ◽  
Peter R.F. Bell ◽  
Andre Krol

1996 ◽  
Vol 34 (5-6) ◽  
pp. 43-50 ◽  
Author(s):  
P. S. Barker ◽  
P. L. Dold

Results of model simulations indicate that without the assumption of COD loss, predictions of oxygen consumption and volatile suspended solids production are significantly over-estimated for biological excess phosphorus removal (BEPR) activated sludge systems (and to a lesser extent anoxic-aerobic systems). These systems apparently consume less oxygen and produce less volatile solids than aerobic systems for the same amount of COD removal. A general model for biological nutrient removal systems has recently been presented by Barker and Dold. Three mechanisms for COD loss are suggested, based on results of COD balances for different types of activated sludge system. Model simulation results with and without the assumption of COD loss are discussed, as well as the influence of influent COD composition on predictions of volatile suspended solids concentration/production and oxygen consumption.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 201-207 ◽  
Author(s):  
S.M. Vermande ◽  
S. Sötemann ◽  
G. Aguilera Soriano ◽  
M. Wentzel ◽  
J.M. Audic ◽  
...  

Two Nitrification-Denitrification Biological Excess Phosphorus Removal (NDBEPR) systems have been operated for 8.5 months in order to compare their Biological Excess Phosphorus Removal (BEPR) performance. One of these systems, i.e. the University of Cape Town (UCT) system, exhibits mainly aerobic P uptake while the External Nitrification Biological Nutrient Removal Activated Sludge (ENBNRAS) system is characterised by high anoxic P uptake. It was observed that when operating with predominantly aerobic P uptake, the UCT system released more P than the ENBNRAS system, even though it had a lower anaerobic mass fraction. However, when the influent TKN/COD was high, i.e. >0.1, anoxic P uptake also occurred in the UCT system and P release dropped to lower levels than in the ENBNRAS. Accordingly, P uptake of the UCT system was 5 mg P/l influent higher than that of the ENBNRAS system, when it was predominantly aerobic, but 9 mg P/l influent lower when anoxic P uptake occurred. As a result, the UCT system achieved superior P removal when aerobic P uptake was predominant (23% higher), but when high influent TKN/COD promoted anoxic P uptake the P removal of the UCT system was poorer than that of the ENBNRAS system. This study clearly showed that anoxic P uptake is not beneficial to NDBEPR systems.


Sign in / Sign up

Export Citation Format

Share Document