In situ formation of nanoscale zero-value iron on fish-scale-based porous carbon for Cr(VI) adsorption

2016 ◽  
Vol 73 (9) ◽  
pp. 2237-2243 ◽  
Author(s):  
Chengming Li ◽  
Bicheng Huang ◽  
Chengxian Li ◽  
Xiao Chen ◽  
Yaqin Huang

Magnetic carbon materials that have nanoscale zero-valent iron (nZVI) supported on fish scale based hierarchical lamellar porous carbon (FHLC) is reported in this study. The nZVI on FHLC was in the form of body-centered-cubic iron (Fe) crystal. Although it was demonstrated that the specific surface area (SBET), total pore volume (Vt) and micropore volume (Vm) of the FHLC decreased with the increase of Fe contents, a certain amount of addition of iron nanoparticles on FHLC enhances the Cr(VI) adsorption properties. The as-prepared material shows faster adsorption rate and higher maximum adsorption capacity (357.14 mg/g) compared to bare FHLC (344.83 mg/g). In addition, this magnetic carbon material exhibits a high saturated magnetization (16.49 emu/g). It is indicated that the as-prepared carbon material not only can be used to remove Cr(VI) efficiently but also shows excellent magnetic separation performance from wastewater.

2014 ◽  
Vol 1 (1) ◽  
pp. 41-53
Author(s):  
B.K. Ostafiychuk ◽  
I.M. Budzulyak ◽  
N.Ya. Ivanichok ◽  
B.I. Rachiy ◽  
R.P. Lisovsky

A research is done to characterize the microporous structure of outgoing and thermally modified (673 K, 180 min) plant-extracted carbon material. The porous system characteristics are worked out by different methods on low temperature (77K) N2 adsorption-desorption based isotherm. It is stated that thermal modification contributes to the enlargement of specific       surface (from 361 m2/g to 673 m2/g), an increase in total pore volume (from 0,166 cm3/g                    to 0,477 cm3/g) and an increase in micropore volume (from 0,127 cm3/g to 0,173 cm3/g). Most effectively thermal modification  is apt to form nanopores with diameters of 0,75; 1,25 and 4 nm.


NANO ◽  
2017 ◽  
Vol 12 (02) ◽  
pp. 1750021 ◽  
Author(s):  
Qiong Tang ◽  
Heqin Li ◽  
Min Zuo ◽  
Jing Zhang ◽  
Yiqin Huang ◽  
...  

In order to explore the effect of hierarchical porous carbon on the performances of Li–S batteries, we synthesized three kinds of micro-/meso-/macroporous carbon materials with different pore properties by facile hard-template method. Different from the majority of reports on porous carbon ensuing large specific surface area (SSA) and total pore volume, it was found that in the case of identically high sulfur content, the pore size distribution substantially influences the performances of Li–S batteries rather than the SSA and total pore volume. Furthermore, in the assembly of micro-/meso-/macropores, the micropore volume ratio to the total pore volume is dominant to the capabilities of batteries. Among the samples, the porous carbon carbonized with the precursor of sucrose at 950[Formula: see text]C presents the highest initial discharge specific capacity of 1327[Formula: see text]mAh/g and retention of 630[Formula: see text]mAh/g over 100 cycles at 0.2C rate along with the best rate capability. This sample possesses the largest micropore volume ratio of 47.54% but a medium SSA of 1217[Formula: see text]m2/g and inferior total pore volume of 0.54[Formula: see text]cm3/g. The abundant micropores effectively improve the conductivity of dispersed sulfur particles, inhibit the loss of sulfur series and enable the cathode to exhibit superior electrochemical performances.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Debashis Panda ◽  
Chanchal Saini ◽  
E. Anil Kumar ◽  
Sanjay Kumar Singh

AbstractIncorporation of rice-husk-ash (RHA), an agricultural waste, in situ during the synthesis of MIL-101(Cr) resulted in a significant improvement in the CO2 adsorption properties over the synthesized RHA-MIL-101(Cr). The newly synthesized RHA-MIL-101(Cr) composite exhibited an enhancement of 14–27% in CO2 adsorption capacity as compared to MIL-101(Cr) at 25 °C and 1 bar. The content of RHA incorporated in RHA-MIL-101(Cr) fine tuned the CO2 capture performance to achieve high working capacity (0.54 mmol g−1), high purity (78%), superior CO2/N2 selectivity (18) and low isosteric heat of adsorption (20–30 kJ mol−1). The observed superior CO2 adsorption performance of RHA-MIL-101(Cr) is attributed to the fine tuning of textural characteristics—enhancement of 12–27% in BET surface area, 12–33% in total pore volume and 18–30% in micropore volume—upon incorporation of RHA in MIL-101(Cr).


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1754
Author(s):  
Zhiwei Ying ◽  
Lu Huang ◽  
Lili Ji ◽  
He Li ◽  
Xinqi Liu ◽  
...  

Porous carbon material with high specific surface area was prepared from soybean dreg by a simple and effective two-step method (high temperature pyrolysis and activation). The structural characteristics of the synthesized carbon were evaluated by Brunauer–Emmett–Teller (BET), N2 adsorption/desorption measurements/techniques, an elemental analyzer (EA), scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), an X-ray diffractometer (XRD), Raman spectroscopy (Raman), a Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The specific surface area of SDB-6-K was 2786 m2 g−1, the pore volume was 2.316 cm3 g−1, and the average pore size was 3.326 nm. The high specific surface area and effective functional groups of carbon material promoted the adsorption of methylene blue. The maximum adsorption capacity of SDB-6-K to methylene blue was 2636 mg g−1 at 318 K. The adsorption kinetic and isotherm data were most suitable for pseudo-second-order and Langmuir equations. The results showed that the adsorbent had excellent adsorptive ability and had good practical application potential in the field of dye wastewater treatment in the future.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 738
Author(s):  
Mohamed Gamal Mohamed ◽  
Mahmoud M. M. Ahmed ◽  
Wei-Ting Du ◽  
Shiao-Wei Kuo

In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.


Sign in / Sign up

Export Citation Format

Share Document