scholarly journals Start-up performance of anaerobic/aerobic/anoxic-sequencing batch reactor (SBR) augmented with denitrifying polyphosphate-accumulating organism (DPAO) and their gene analysis

2018 ◽  
Vol 78 (3) ◽  
pp. 523-533
Author(s):  
Yifang Zhang ◽  
Meng Li ◽  
Qian Zhang ◽  
Wenjiao Sang ◽  
Yiheng Jiang

Abstract This paper was aimed at investigating the bio-augmentation performance of anaerobic/aerobic/anoxic-type sequencing batch reactor (SBR) during its start-up period by introducing a strain of denitrifying polyphosphate-accumulating organism (DPAO). Two SBR reactors were inoculated to study the start-up performance, with one for DPAO introduction and the other as the control specimen. A comparison, of microbial community diversity based on the reactor which obtained a better performance, was made between polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses encoded by 16S rRNA and functional genes (nirS, nirK). The results indicated that the introduction of DPAO had a positive effect on the biological system, including a reduction of the start-up period, the improvement of sludge characteristics and the removal efficiency of nutrients, especially for phosphorus. By comparing the phylogenetic relationship of 16S rRNA and functional genes (nirS, nirK) of the reactor augmented with DPAO, it could be found that the phylogenetic relationship of these genes were remarkably inconsistent with each other. Therefore, 16SrRNA should not be used to determine the microbial community diversity of functional bacteria which could accomplish denitrification, and gene nirK should not be neglected when determining functional bacteria.

2004 ◽  
Vol 70 (11) ◽  
pp. 6767-6775 ◽  
Author(s):  
He-Long Jiang ◽  
Joo-Hwa Tay ◽  
Abdul Majid Maszenan ◽  
Stephen Tiong-Lee Tay

ABSTRACT Aerobic granules are self-immobilized aggregates of microorganisms and represent a relatively new form of cell immobilization developed for biological wastewater treatment. In this study, both culture-based and culture-independent techniques were used to investigate the bacterial diversity and function in aerobic phenol- degrading granules cultivated in a sequencing batch reactor. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes demonstrated a major shift in the microbial community as the seed sludge developed into granules. Culture isolation and DGGE assays confirmed the dominance of β-Proteobacteria and high-G+C gram-positive bacteria in the phenol-degrading aerobic granules. Of the 10 phenol-degrading bacterial strains isolated from the granules, strains PG-01, PG-02, and PG-08 possessed 16S rRNA gene sequences that matched the partial sequences of dominant bands in the DGGE fingerprint belonging to the aerobic granules. The numerical dominance of strain PG-01 was confirmed by isolation, DGGE, and in situ hybridization with a strain-specific probe, and key physiological traits possessed by PG-01 that allowed it to outcompete and dominate other microorganisms within the granules were then identified. This strain could be regarded as a functionally dominant strain and may have contributed significantly to phenol degradation in the granules. On the other hand, strain PG-08 had low specific growth rate and low phenol degradation ability but showed a high propensity to autoaggregate. By analyzing the roles played by these two isolates within the aerobic granules, a functional model of the microbial community within the aerobic granules was proposed. This model has important implications for rationalizing the engineering of ecological systems.


2018 ◽  
Vol 46 (1) ◽  
pp. 1430-1436 ◽  
Author(s):  
Shijun Fu ◽  
Shijin Guo ◽  
Jianjun Wang ◽  
Yumao Wang ◽  
Zhimei Zhang ◽  
...  

2013 ◽  
Vol 34 (9) ◽  
pp. 1211-1217 ◽  
Author(s):  
Qian Zhang ◽  
Jiajie He ◽  
Hongyu Wang ◽  
Fang Ma ◽  
Kai Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document