scholarly journals Photocatalytic ozonation in an immersion rotary body reactor for the removal of micro-pollutants from the effluent of wastewater treatment plants

Author(s):  
Simon Mehling ◽  
Tobias Schnabel ◽  
Jörg Londong

Abstract Carrier-bound titanium dioxide catalysts were used in a photocatalytic ozonation reactor for the degradation of micro-pollutants in real wastewater. A photocatalytic immersion rotary body reactor with 36 cm disk diameter was used, which was irradiated using UV-A LEDs. The rotating disks were covered with catalysts based on stainless steel grids coated with titanium dioxide. The dosing of ozone was carried out through the liquid phase via an external enrichment and a supply system transverse to the flow direction. The influence of irradiation power and ozone dose on the degradation rate for photocatalytic ozonation was investigated. In addition, the performance of the individual processes photocatalysis and ozonation were studied. The degradation kinetics of the parent compounds were determined by LC-MS/MS. First-order kinetics were determined for photocatalysis and photocatalytic ozonation. A maximum reaction rate of the reactor was determined, which could be achieved by both photocatalysis and photocatalytic ozonation. At a dosage of 0.4 mg /mg DOC, the maximum reaction rate could be achieved using 75% of the irradiation power used for sole photocatalysis, allowing increases in the energetic efficiency of photocatalytic wastewater treatment processes. The process of photocatalytic ozonation is suitable to remove a wide spectrum of micro-pollutants from wastewater. HIGHLIGHT within the work, reaction rates for the degradation of micropollutants in real wastewater matrix are presented. due to the number of investigated pollutants as well as the practical investigation conditions, a more precise evaluation of the use of photocatalysis and photocatalytic ozonation for wastewater treatment is possible.

2010 ◽  
Vol 62 (4) ◽  
pp. 947-955 ◽  
Author(s):  
Xiao-ming Li ◽  
Qi Yang ◽  
Ying Zhang ◽  
Wei Zheng ◽  
Xiu Yue ◽  
...  

The performance of a fluidized bed reactor using immobilized Phanerochaete chrysosporium to remove 2,4-dichlorophenol (2,4-DCP) from aqueous solution was investigated. The contribution of lignin peroxidase (LiP) and manganese peroxidase (MnP) secreted by Phanerochaete chrysosporium to the 2,4-DCP degradation was examined. Results showed that Lip and Mnp were not essential to 2,4-DCP degradation while their presence enhanced the degradation process and reaction rate. In sequential batch experiment, the bioactivity of immobilized cells was recovered and improved during the culture and the maximum degradation rate constant of 13.95 mg (Ld)−1 could be reached. In continuous bioreactor test, the kinetic behavior of the Phanerochaete chrysosporium immobilized on loofa sponge was found to follow the Monod equation. The maximum reaction rate was 7.002 mg (Lh)−1, and the saturation constant was 26.045 mg L−1.


1991 ◽  
Vol 24 (5) ◽  
pp. 141-147
Author(s):  
Michimasa Nakamura ◽  
Atsushi Sakai ◽  
Jun'ichiro Matsumoto

The two series of the characteristics of anaerobic degradation of low glucose concentrations were investigated. In the first series, the pH value in each reactor was not controlled. In the second series, the pH value in each reactor was controlled in the range of 6.9–7.2, by adding sodium bicarbonate into each influent. The ORP value was depressed by controlling the pH value of each reactor from acid range to approximately neutral range. In the pH uncontrolled series, the pH value in outflow decreased with increasing glucose concentration. In the pH uncontrolled series, produced total volatile fatty acid was about 70 to 550 mg/l; on the other hand, in pH controlled series, produced total volatile fatty acid was about 50 mg/l to 350 mg/l. The highest concentrations of acids formed were acetic acids, the second highest formed were propionic acids, the last formed were butyric acids. In the pH uncontrolled series, the maximum reaction rate constant Vm was 0.749 gCOD/gVS · day and the saturation constant Ks = 0.435 g/l. On the other hand, in the pH controlled series, the maximum reaction rate constant Vm was 1.441 gCOD/gVS · day and the saturation constant Ks = 0.739 g/l. Thus by controlling the pH value of the reactor, the activities of the anaerobic bacteria were much enhanced.


Sign in / Sign up

Export Citation Format

Share Document