On the estimation of the reaction mechanisms of thermal decomposition of solids from the fraction reacted at the maximum reaction rate

1978 ◽  
Vol 25 (2) ◽  
pp. 257-260 ◽  
Author(s):  
J.M. Criado ◽  
R. Garcia-Rojas ◽  
J. Morales
2010 ◽  
Vol 62 (4) ◽  
pp. 947-955 ◽  
Author(s):  
Xiao-ming Li ◽  
Qi Yang ◽  
Ying Zhang ◽  
Wei Zheng ◽  
Xiu Yue ◽  
...  

The performance of a fluidized bed reactor using immobilized Phanerochaete chrysosporium to remove 2,4-dichlorophenol (2,4-DCP) from aqueous solution was investigated. The contribution of lignin peroxidase (LiP) and manganese peroxidase (MnP) secreted by Phanerochaete chrysosporium to the 2,4-DCP degradation was examined. Results showed that Lip and Mnp were not essential to 2,4-DCP degradation while their presence enhanced the degradation process and reaction rate. In sequential batch experiment, the bioactivity of immobilized cells was recovered and improved during the culture and the maximum degradation rate constant of 13.95 mg (Ld)−1 could be reached. In continuous bioreactor test, the kinetic behavior of the Phanerochaete chrysosporium immobilized on loofa sponge was found to follow the Monod equation. The maximum reaction rate was 7.002 mg (Lh)−1, and the saturation constant was 26.045 mg L−1.


1991 ◽  
Vol 24 (5) ◽  
pp. 141-147
Author(s):  
Michimasa Nakamura ◽  
Atsushi Sakai ◽  
Jun'ichiro Matsumoto

The two series of the characteristics of anaerobic degradation of low glucose concentrations were investigated. In the first series, the pH value in each reactor was not controlled. In the second series, the pH value in each reactor was controlled in the range of 6.9–7.2, by adding sodium bicarbonate into each influent. The ORP value was depressed by controlling the pH value of each reactor from acid range to approximately neutral range. In the pH uncontrolled series, the pH value in outflow decreased with increasing glucose concentration. In the pH uncontrolled series, produced total volatile fatty acid was about 70 to 550 mg/l; on the other hand, in pH controlled series, produced total volatile fatty acid was about 50 mg/l to 350 mg/l. The highest concentrations of acids formed were acetic acids, the second highest formed were propionic acids, the last formed were butyric acids. In the pH uncontrolled series, the maximum reaction rate constant Vm was 0.749 gCOD/gVS · day and the saturation constant Ks = 0.435 g/l. On the other hand, in the pH controlled series, the maximum reaction rate constant Vm was 1.441 gCOD/gVS · day and the saturation constant Ks = 0.739 g/l. Thus by controlling the pH value of the reactor, the activities of the anaerobic bacteria were much enhanced.


Conventional kinetic techniques (static and flow systems) have been used in conjunction with an integral gas chromatographic analytical system in a study of the oxidation behaviour of butene-1, cis butene-2 and trans butene-2. The cis and trans isomers of butene-2 behaved indistinguishably. All three olefins gave qualitatively the same products, but butene-1 differed in the proportions of the individual products formed, and also in oxidation rate. A mechanism, based on that previously proposed for the ethylene + oxygen system, has been found to account for these differences. The ethylene mechanism is only possible, however, because of the slow rate of oxidation of the allylic type radicals easily formed in the reactions. The relative stability of these radicals provides a natural explanation of the phenomenon of self-inhibition observed in olefin + oxygen reactions. The discontinuous production of intermediate substances noted during the oxidation of butene-2 at high reaction rates, provides further evidence for a thermal theory of cool-fiame formation. Acetaldehyde has been found to be the degenerate branching agent and the maximum reaction rate of these systems was found to be identically related to the concentration of this substance.


Sign in / Sign up

Export Citation Format

Share Document