Shear Deformation Development and the Increase of Pore Pressure due to Rainfall Infiltration in Sandy Model Slope under Different Inclination

Author(s):  
Sasahara K
2015 ◽  
Vol 744-746 ◽  
pp. 690-694
Author(s):  
Muhammad Rehan Hakro ◽  
Indra Sati Hamonangan Harahap

Rainfall-induced landslides occur in many parts of the world and causing a lot of the damages. For effective prediction of rainfall-induced landslides the comprehensive understanding of the failure process is necessary. Under different soil and hydrological conditions experiments were conducted to investigate and clarify the mechanism of slope failure. The failure in model slope was induced by sprinkling the rainfall on slope composed of sandy soil in small flume. Series of tests were conducted in small scale flume to better understand the failure process in sandy slopes. The moisture content was measured with advanced Imko TDR (Time Domain Reflectrometry) moisture sensors in addition to measurements of pore pressure with piezometers. The moisture content increase rapidly to reach the maximum possible water content in case of higher intensity of rainfall, and higher intensity of the rainfall causes higher erosion as compared to smaller intensity of the rainfall. The controlling factor for rainfall-induced flowslides was density of the slope, rather than intensity of the rainfall and during the flowslide the sudden increase in pore pressure was observed. Higher pore pressure was observed at the toe of the slope as compared to upper part of the slope.


2021 ◽  
Author(s):  
Lucas Pelascini ◽  
Philippe Steer ◽  
Maxime Mouyen ◽  
Laurent Longuevergne

Abstract. Landslides are often triggered by catastrophic events, among which earthquakes and rainfall are the most depicted. However, very few studies have focused on the effect of atmospheric pressure on slope stability, even though weather events such as typhoons are associated with significant atmospheric pressure changes. Indeed, both atmospheric pressure changes and rainfall-induced groundwater level change can generate pore pressure changes with similar amplitude. In this paper, we assess the respective impacts of atmospheric effects and rainfall over the stability of a hillslope. An analytical model of transient groundwater dynamics is developed to compute slope stability for finite hillslopes. Slope stability is evaluated through a safety factor based on the Mohr-Coulomb failure criterion. Both rainfall infiltration and atmospheric pressure variations, which impact slope stability by modifying the pore pressure of the media, are described by diffusion equations. The models have then been forced by weather data from different typhoons that were recorded over Taiwan. While rainfall infiltration can induce pore pressure change up to hundred kPa, its effects is delayed in time due to diffusion. To the contrary, atmospheric pressure change induces pore pressure changes not exceeding a few kPa, but its effect is instantaneous. Moreover, the effect of rainfall infiltration on slope stability decreases towards the toe of the hillslope and is cancelled where the water table reaches the surface, leaving atmospheric pressure change as the main driver of slope instability. This study allows for a better insight of slope stability through pore pressure analysis, and shows that atmospheric effects shouldn’t always be neglected.


Author(s):  
Fan Guochuan ◽  
Sun Zhongshi

Under influence of ductile shear deformation, granulite facies mineral paragenesis underwent metamorphism and changes in chemical composition. The present paper discusses some changes in chemical composition of garnet in hypers thene_absent felsic gnesiss and of hypersthene in rock in early and late granulite facies undergone increasing ductile shear deformation .In garnet fetsic geniss, band structures were formed because of partial melting and resulted in zoning from massive⟶transitional⟶melanocrate zones in increasing deformed sequence. The electron-probe analyses for garnet in these zones are listed in table 1 . The Table shows that Mno, Cao contents in garnet decrease swiftly from slightly to intensely deformed zones.In slightly and moderately deformed zones, Mgo contents keep unchanged and Feo is slightly lower. In intensely deformed zone, Mgo contents increase, indicating a higher temperature. This is in accord with the general rule that Mgo contents in garnet increase with rising temperature.


Sign in / Sign up

Export Citation Format

Share Document