Emulsion flow which preparation excludes a presence of mechanical impurities

2012 ◽  
Vol 9 (2) ◽  
pp. 118-122
Author(s):  
A.A. Rakhimov

Experiments were carried out with waterhydrocarbon emulsions with various emulsifiers in capillaries with a length of 2 cm, diameters of 40 and 100 µm. To eliminate the influence of mechanical impurities comparable in size with the diameter of the capillary in first case emulsion components were filtered through fine-meshed filters. In second case obtained that way emulsion was additionally filtered through a system consisting of 3 filters with a cell size of 30-40 microns. In a capillary of 100 µm such emulsion came in a blocked state. Additional filtration of the emulsion through the mesh filters have led to an increase in viscosity but in 100 µm capillaries the time until the blocking 2-3 times more than the original. Rheology of used emulsions is well described by the model of Ostwald-de Waale. It was determined that emulsion blocking mechanism is due to the presence of inclusions not emulsion viscosity.

2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


1985 ◽  
Vol 75 (1) ◽  
pp. 357-376 ◽  
Author(s):  
J.M. Mitchison ◽  
P. Nurse

The cylindrical cells of Schizosaccharomyces pombe grow in length by extension at the ends and not the middle. At the beginning of the cell cycle, growth is restricted to the ‘old end’, which existed in the previous cycle. Later on, the ‘new end’, formed from the septum, starts to grow at a point in the cycle that we have called NETO (‘new end take-off’). Fluorescence microscopy on cells stained with Calcofluor has been used to study NETO in size mutants, in blocked cdc mutants and with different growth temperatures and media. In wild-type cells (strain 972) NETO happens at 0.34 of the cycle with a cell length of 9.5 microns. With size mutants that are smaller at division, NETO takes place at the same size (9.0-9.5 microns) but this is not achieved until later in the cycle. Another control operates in larger size mutants since NETO occurs at the same stage of the cycle (about 0.32) as in wild type but at a larger cell size. This control is probably a requirement to have completed an event in early G2, since most cdc mutant cells blocked before this point in the cycle do not show NETO whereas most of those blocked in late G2 do show it. We conclude that NETO only happens if: (1) the cell length is greater than a critical value of 9.0-9.5 microns; and (2) the cell has traversed the first 0.3-0.35 of the cycle and passed early G2. NETO is delayed in poor media, in which cell size is also reduced. Temperature has little effect on NETO under steady-state conditions, but there is a transient delay for some hours after a temperature shift. NETO is later in another wild-type strain, 132. Time-lapse photomicrography was used to follow the rates of length growth in single cells. Wild-type cells showed two linear segments during the first 75% of the cycle. There was a rate-change point (RCP), coincident with NETO, where the rate of total length extension increased by 35%. This increase was not due simply to the start of new-end growth, since old-end growth slowed down in some cells at the RCP. cdc 11.123 is a mutant in which septation and division is blocked at 35 degrees C but nuclear division continues.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 47 (345) ◽  
pp. 465-471 ◽  
Author(s):  
J. F. W. Bowles ◽  
D. Atkin ◽  
J. L. M. Lambert ◽  
T. Deans ◽  
R. Phillips

AbstractMicroprobe analyses of members of the erlichmanite-laurite series from Guma Water and Senduma, Sierra Leone and Tanah Laut, Borneo, indicate that complete solid solution is possible between OsS2 and RuS2 with considerable substitution of Os and Ru by Ir, Rh, and Pt. The cell size of the erlichmanite from Guma Water is a = 5.6183±0.0003 Å at a composition (Os0.61Ru0.30Ir0.06Rh0.03)Σ0.93S2 whilst the laurite from Senduma has a composition of (Ru0.88Os0.05Ir0.04 Rh0.03)Σ0.93S2 and a cell size of a = 5.6089±0.0005 Å. Substitution of Os for Ru provides the predominant cause of the variation of cell size. Substitution by other elements of the platinum group appears to produce little effect on cell size and is presumably controlled by genesis rather than considerations of crystal chemistry or structure. The recorded analyses for these elements indicate a pre-dominance of Ir over Rh for members of the series containing more than about 15% of the laurite molecule. For the remainder of the series Rh is more important than Ir. The reflectance in air and oil of the members of the series from Sierra Leone and Borneo are presented and the microhardness of the erlichmanite from Guma Water shown to be 1854 kg/mm2. This is the first report of laurite from Senduma, Sierra Leone.


1981 ◽  
Vol 18 (01) ◽  
pp. 65-75 ◽  
Author(s):  
Aidan Sudbury

In cell-size-dependent growth the probabilistic rate of division of a cell into daughter-cells and the rate of increase of its size depend on its size. In this paper the expected number of cells in the population at time t is calculated for a variety of models, and it is shown that population growths slower and faster than exponential are both possible. When the cell sizes are bounded conditions are given for exponential growth.


2018 ◽  
Vol 45 (6) ◽  
pp. 665-666
Author(s):  
Krushna C. Patra ◽  
Nabeel Bardeesy
Keyword(s):  

Meccanica ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 2391-2411 ◽  
Author(s):  
Barbara Tomczyk ◽  
Marcin Gołąbczak

AbstractThe problem of linear dynamic thermoelasticity in Kirchhoff–Love-type circular cylindrical shells having properties periodically varying in circumferential direction (uniperiodic shells) is considered. In order to describe thermoelastic behaviour of such shells, two mathematical averaged models are proposed—the non-asymptotic tolerance and the consistent asymptotic models. Considerations are based on the known Kirchhoff–Love theory of elasticity combined with Duhamel-Neumann thermoelastic constitutive relations and on Fourier’s theory of heat conduction. The non-asymptotic tolerance model equations depending on a cell size are derived applying the tolerance averaging technique and a certain extension of the known stationary action principle. The consistent asymptotic model equations being independent on a microstructure size are obtained by means of the consistent asymptotic approach. Governing equations of both the models have constant coefficients, contrary to starting shell equations with periodic, non-continuous and oscillating coefficients. As examples, two special length-scale problems will be analysed in the framework of the proposed models. The first of them deals with investigation of the effect of a cell size on the shape of initial distributions of temperature micro-fluctuations. The second one deals with study of the effect of a microstructure size on the distribution of total temperature field approximated by sum of an averaged temperature and temperature fluctuations.


2010 ◽  
Vol 6 (12) ◽  
pp. e1001036 ◽  
Author(s):  
Marco Vilela ◽  
Jeffrey J. Morgan ◽  
Paul A. Lindahl
Keyword(s):  

1987 ◽  
Vol 104 (3) ◽  
pp. 739-748 ◽  
Author(s):  
L J Goff ◽  
A W Coleman

Cells with polyploid nuclei are generally larger than cells of the same organism or species with nonpolyploid nuclei. However, no such change of cell size with ploidy level is observed in those red algae which alternate isomorphic haploid with diploid generations. The results of this investigation reveal the explanation. Nuclear DNA content and other parameters were measured in cells of the filamentous red alga Griffithsia pacifica. Nuclei of the diploid generation contain twice the DNA content of those of the haploid generation. However, all cells except newly formed reproductive cells are multinucleate. The nuclei are arranged in a nearly perfect hexagonal array just beneath the cell surface. When homologous cells of the two generations are compared, although the cell size is nearly identical, each nucleus of the diploid cell is surrounded by a region of cytoplasm (a "domain") nearly twice that surrounding a haploid nucleus. Cytoplasmic domains associated with a diploid nucleus contain twice the number of plastids, and consequently twice the amount of plastid DNA, than is associated with the domain of a haploid nucleus. Thus, doubling of ploidy is reflected in doubling of the size and organelle content of the domain associated with each nucleus. However, cell size does not differ between homologous cells of the two generations, because total nuclear DNA (sum of the DNA in all nuclei in a cell) per cell does not differ. This is the solution to the cytological paradox of isomorphy.


Sign in / Sign up

Export Citation Format

Share Document