QUATERNION-BASED ATTITUDE CONTROL OF HIGHLY MANEUVERABLE UNMANNED UNDERWATER VEHICLE

2021 ◽  
Vol 54 (2) ◽  
pp. 106-112
Author(s):  
GAVRILINA EKATERINA A. ◽  
◽  
VELTISHEV VADIM V. ◽  

Traditionally, unmanned underwater vehicles are operated at low angles of inclination (pitch and roll). However, there are tasks that require high maneuverability and controllability of the underwater vehicle in the entire range of orientation angles. At the same time, traditional control systems use the Euler angles and have limitations associated with the degeneration of the kinematic equations at a picth angle of ± 90 °, the problem of the non-uniqueness of the Euler angles, and the deterioration of the system performance at large inclinations of the vehicle. Thus, the question of developing a synthesis method for a control system for highly maneuverable unmanned underwater vehicles arises. The paper provides a review and comparative analysis of existing approaches to attitude control, on the basis of which an approach using quaternions is chosen. The law of attitude control based on quaternions was approved during field tests on a hybrid unmanned underwater vehicle "Iznos", developed at Bauman Moscow State Technical University. The results obtained during the tests are given in the article. The quaternion-based approach has better performance in comparison with the traditional control system. In addition, control system based on quaternion approach has a simple structure and can be used to increase the maneuverability of unmanned underwater vehicles with average requirements for positioning accuracy.

2021 ◽  
Vol 29 (1) ◽  
pp. 97-110
Author(s):  
V.S. Bykova ◽  
◽  
A.I. Mashoshin ◽  
I.V. Pashkevich ◽  
◽  
...  

Two safe navigation algorithms for autonomous underwater vehicles are described: algorithm for avoidance of point obstacles including all the moving underwater and surface objects, and limited size bottom objects, and algorithm for bypassing extended obstacles such as bottom elevations, rough lower ice edge, garbage patches. These algorithms are developed for a control system of a heavyweight autonomous underwater vehicle.


Author(s):  
Norimitsu Sakagami ◽  
Mizuho Shibata ◽  
Sadao Kawamura ◽  
Toshifumi Inoue ◽  
Hiroyuki Onishi ◽  
...  

2019 ◽  
Vol 9 (22) ◽  
pp. 4958 ◽  
Author(s):  
Lichuan Zhang ◽  
Lu Liu ◽  
Shuo Zhang ◽  
Sheng Cao

The application of Autonomous Underwater Vehicle (AUV) is expanding rapidly, which drives the urgent need of its autonomy improvement. Motion control system is one of the keys to improve the control and decision-making ability of AUVs. In this paper, a saturation based nonlinear fractional-order PD (FOPD) controller is proposed for AUV motion control. The proposed controller is can achieve better dynamic performance as well as robustness compared with traditional PID type controller. It also has the advantages of simple structure, easy adjustment and easy implementation. The stability of the AUV motion control system with the proposed controller is analyzed through Lyapunov method. Moreover, the controlled performance can also be adjusted to satisfy different control requirements. The outperformed dynamic control performance of AUV yaw and depth systems with the proposed controller is shown by the set-point regulation and trajectory tracking simulation examples.


Sign in / Sign up

Export Citation Format

Share Document