scholarly journals Approximate methods for calculating hypersingular integrals

Author(s):  
I.V. Boykov ◽  
◽  
P.V. Aykashev ◽  
2001 ◽  
Vol 28 (3) ◽  
pp. 127-179 ◽  
Author(s):  
I. V. Boikov

In solving numerous problems in mathematics, mechanics, physics, and technology one is faced with necessity of calculating different singular integrals. In analytical form calculation of singular integrals is possible only in unusual cases. Therefore approximate methods of singular integrals calculation are an active developing direction of computing in mathematics. This review is devoted to the optimal with respect to accuracy algorithms of the calculation of singular integrals with fixed singularity, Cauchy and Hilbert kernels, polysingular and many-dimensional singular integrals. The isolated section is devoted to the optimal with respect to accuracy algorithms of the calculation of the hypersingular integrals.


2020 ◽  
Author(s):  
Kaihua Zhang ◽  
Ty Balduf ◽  
Marco Caricato

<div> <div> <p> </p><div> <div> <div> <p>This work presents the first simulations of the full optical rotation (OR) tensor at coupled cluster with single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD-MVG OR tensor is origin independent, and each tensor element can in principle be related directly to experimental measurements on oriented systems. We compare the CCSD results with those from two density functionals, B3LYP and CAM-B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components and for the trace (which is related to the isotropic OR), by 10-20% with CAM-B3LYP and 20-30% with B3LYP. The data show that the contribution of the electric dipole-magnetic dipole polarizability tensor to the OR tensor is on average twice as large as that of the electric dipole-electric quadrupole polarizability tensor. The difficult case of (1S,4S)-(–)-norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of CAM-B3LYP with CCSD to the ability of this functional to better reproduce electron delocalization compared with B3LYP, consistently with previous reports on isotropic OR. The CCSD-MVG approach allows the computation of reference data of the full OR tensor, which may be used to test more computationally efficient approximate methods that can be employed to study realistic models of optically active materials. </p> </div> </div> </div> </div> </div>


Author(s):  
Boris G. Aksenov ◽  
Yuri E. Karyakin ◽  
Svetlana V. Karyakina

Equations, which have nonlinear nonmonotonic dependence of one of the coefficients on an unknown function, can describe processes of heat and mass transfer. As a rule, existing approximate methods do not provide solutions with acceptable accuracy. Numerical methods do not involve obtaining an analytical expression for the unknown function and require studying the convergence of the algorithm used. The value of absolute error is uncertain. The authors propose an approximate method for solving such problems based on Westphal comparison theorems. The comparison theorems allow finding upper and lower bounds of the unknown exact solution. A special procedure developed for the stepwise improvement of these bounds provide solutions with a given accuracy. There are only a few problems for equations with nonlinear nonmonotonic coefficients for which the exact solution has been obtained. One of such problems, presented in this article, shows the efficiency of the proposed method. The results prove that the proposed method for obtaining bounds of the solution of a nonlinear nonmonotonic equation of parabolic type can be considered as a new method of the approximate analytical solution having guaranteed accuracy. In addition, the proposed here method allows calculating the maximum deviation from the unknown exact solution of the results of other approximate and numerical methods.


Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 73
Author(s):  
Marta I. Hernández ◽  
Massimiliano Bartolomei ◽  
José Campos-Martínez

We report accurate quantum calculations of the sieving of Helium atoms by two-dimensional (2D) graphtriyne layers with a new interaction potential. Thermal rate constants and permeances in an ample temperature range are computed and compared for both Helium isotopes. With a pore larger than graphdiyne, the most common member of the γ-graphyne family, it could be expected that the appearance of quantum effects were more limited. We find, however, a strong quantum behavior that can be attributed to the presence of selective adsorption resonances, with a pronounced effect in the low temperature regime. This effect leads to the appearance of some selectivity at very low temperatures and the possibility for the heavier isotope to cross the membrane more efficiently than the lighter, contrarily to what happened with graphdiyne membranes, where the sieving at low energy is predominantly ruled by quantum tunneling. The use of more approximate methods could be not advisable in these situations and prototypical transition state theory treatments might lead to large errors.


Sign in / Sign up

Export Citation Format

Share Document