scholarly journals Multivalued solutions of multidimensional linear equations of heat conduction and rivertons

Author(s):  
V.M. Zhuravlev ◽  
◽  
V.M. Morozov ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Arghand ◽  
Majid Amirfakhrian

We propose a new meshless method to solve a backward inverse heat conduction problem. The numerical scheme, based on the fundamental solution of the heat equation and radial basis functions (RBFs), is used to obtain a numerical solution. Since the coefficients matrix is ill-conditioned, the Tikhonov regularization (TR) method is employed to solve the resulted system of linear equations. Also, the generalized cross-validation (GCV) criterion is applied to choose a regularization parameter. A test problem demonstrates the stability, accuracy, and efficiency of the proposed method.


2021 ◽  
Vol 24 (1) ◽  
pp. 6-12
Author(s):  
Yurii M. Matsevytyi ◽  
◽  
Valerii V. Hanchyn ◽  

On the basis of A. N. Tikhonov’s regularization theory, a method is developed for solving inverse heat conduction problems of identifying a smooth outer boundary of a two-dimensional region with a known boundary condition. For this, the smooth boundary to be identified is approximated by Schoenberg’s cubic splines, as a result of which its identification is reduced to determining the unknown approximation coefficients. With known boundary and initial conditions, the body temperature will depend only on these coefficients. With the temperature expressed using the Taylor formula for two series terms and substituted into the Tikhonov functional, the problem of determining the increments of the coefficients can be reduced to solving a system of linear equations with respect to these increments. Having chosen a certain regularization parameter and a certain function describing the shape of the outer boundary as an initial approximation, one can implement an iterative process. In this process, the vector of unknown coefficients for the current iteration will be equal to the sum of the vector of coefficients in the previous iteration and the vector of the increments of these coefficients, obtained as a result of solving a system of linear equations. Having obtained a vector of coefficients as a result of a converging iterative process, it is possible to determine the root-mean-square discrepancy between the temperature obtained and the temperature measured as a result of the experiment. It remains to select the regularization parameter in such a way that this discrepancy is within the measurement error. The method itself and the ways of its implementation are the novelty of the material presented in this paper in comparison with other authors’ approaches to the solution of geometric inverse heat conduction problems. When checking the effectiveness of using the method proposed, a number of two-dimensional test problems for bodies with a known location of the outer boundary were solved. An analysis of the influence of random measurement errors on the error in identifying the outer boundary shape is carried out.


1964 ◽  
Vol 60 (4) ◽  
pp. 897-907 ◽  
Author(s):  
M. Wadsworth ◽  
A. Wragg

AbstractThe replacement of the second space derivative by finite differences reduces the simplest form of heat conduction equation to a set of first-order ordinary differential equations. These equations can be solved analytically by utilizing the spectral resolution of the matrix formed by their coefficients. For explicit boundary conditions the solution provides a direct numerical method of solving the original partial differential equation and also gives, as limiting forms, analytical solutions which are equivalent to those obtainable by using the Laplace transform. For linear implicit boundary conditions the solution again provides a direct numerical method of solving the original partial differential equation. The procedure can also be used to give an iterative method of solving non-linear equations. Numerical examples of both the direct and iterative methods are given.


2011 ◽  
Vol 308-310 ◽  
pp. 473-476
Author(s):  
Wei Shi ◽  
Li Li Ma

The thermal conductivity problem of functionally graded plate is studied under different temperature fields by a new concise BEM in this paper. At first, we convert the heat conduction differential equation of functionally graded materials (FGMs) to a homogeneous material thermal conductivity equation by using variable substitution, then the Galerkin boundary integral equation is reduced to be a system of linear equations. Finally we arrive at an internal temperature of objects, and plot the distribution graphics and effects of material parameters on temperature distribution. It proves that the new concise BEM is very effective.


1881 ◽  
Vol 11 (270supp) ◽  
pp. 4307-4307
Author(s):  
William Crookes
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document