scholarly journals Late-onset Patients with Sporadic Amyotrophic Lateral Sclerosis in Japan have a Higher Progression Rate of ALSFRS-R at the Time of Diagnosis

2012 ◽  
Vol 51 (6) ◽  
pp. 579-584 ◽  
Author(s):  
Yuji Tanaka ◽  
Nobuaki Yoshikura ◽  
Naoko Harada ◽  
Megumi Yamada ◽  
Akihiro Koumura ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Jennifer A. Fifita ◽  
Sandrine Chan Moi Fat ◽  
Emily P. McCann ◽  
Kelly L. Williams ◽  
Natalie A. Twine ◽  
...  

The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1210
Author(s):  
Júlia Costa ◽  
Marta Gromicho ◽  
Ana Pronto-Laborinho ◽  
Conceição Almeida ◽  
Ricardo A. Gomes ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease that affects motor neurons controlling voluntary muscles. Survival is usually 2–5 years after onset, and death occurs due to respiratory failure. The identification of biomarkers would be very useful to help in disease diagnosis and for patient stratification based on, e.g., progression rate, with implications in therapeutic trials. Neurofilaments constitute already-promising markers for ALS and, recently, chitinases have emerged as novel marker targets for the disease. Here, we investigated cerebrospinal fluid (CSF) chitinases as potential markers for ALS. Chitotriosidase (CHIT1), chitinase-3-like protein 1 (CHI3L1), chitinase-3-like protein 2 (CHI3L2) and the benchmark marker phosphoneurofilament heavy chain (pNFH) were quantified by an enzyme-linked immunosorbent assay (ELISA) from the CSF of 34 ALS patients and 24 control patients with other neurological diseases. CSF was also analyzed by UHPLC-mass spectrometry. All three chitinases, as well as pNFH, were found to correlate with disease progression rate. Furthermore, CHIT1 was elevated in ALS patients with high diagnostic performance, as was pNFH. On the other hand, CHIT1 correlated with forced vital capacity (FVC). The three chitinases correlated with pNFH, indicating a relation between degeneration and neuroinflammation. In conclusion, our results supported the value of CHIT1 as a diagnostic and progression rate biomarker, and its potential as respiratory function marker. The results opened novel perspectives to explore chitinases as biomarkers and their functional relevance in ALS.


2021 ◽  
Vol 49 (7) ◽  
pp. 030006052110332
Author(s):  
Zhiliang Fan ◽  
Hong Jiang ◽  
Xueqin Song ◽  
Yansu Guo ◽  
Xinying Tian

Objective To investigate whether GSTA1, GSTO2, and GSTZ1 are relevant to an increased risk of amyotrophic lateral sclerosis (ALS) in a Chinese population. Methods In this study, 143 sporadic ALS (sALS) patients (83 men, 60 women) and 210 age- and sex-matched healthy subjects were enrolled. Blood samples were collected by venipuncture. Genomic DNA was isolated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) according to the manufacturer’s instructions. The potential associations between ALS and GSTA1, GSTO2, and GSTZ1 polymorphisms were estimated using chi-squared analysis and unconditional logistic regression. Results The D allele and genotype frequencies of GSTO2 were increased in sALS patients compared with healthy subjects, indicating that the GSTO2 DD genotype was associated with an increased risk of sALS (odds ratio [OR] = 3.294, 95% confidence interval [CI] = 1.039–10.448). However, a significant association between the DD genotype and the risk of sALS was evident in men only (OR = 7.167, 95% CI = 1.381–37.202). Conclusion This study revealed that the D allele and genotype frequencies of GSTO2 were increased in sALS patients. The GSTO2 DD genotype was associated with an increased risk of sALS in men in a Chinese population.


2014 ◽  
Vol 93 (2) ◽  
pp. 370-379 ◽  
Author(s):  
Masayuki Kaneko ◽  
Takao Noguchi ◽  
Saori Ikegami ◽  
Takeyuki Sakurai ◽  
Akiyoshi Kakita ◽  
...  

2015 ◽  
Vol 33 (4) ◽  
pp. 735-748 ◽  
Author(s):  
Jeffrey M. Statland ◽  
Richard J. Barohn ◽  
April L. McVey ◽  
Jonathan S. Katz ◽  
Mazen M. Dimachkie

2012 ◽  
Vol 33 (11) ◽  
pp. 2721.e1-2721.e2 ◽  
Author(s):  
Jack W. Miller ◽  
Bradley N. Smith ◽  
Simon D. Topp ◽  
Ammar Al-Chalabi ◽  
Christopher E. Shaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document