scholarly journals Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

2012 ◽  
Author(s):  
Erik A. Moro
2011 ◽  
Vol 60 (4) ◽  
pp. 1408-1415 ◽  
Author(s):  
Panagiotis Polygerinos ◽  
Lakmal D. Seneviratne ◽  
Kaspar Althoefer

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lian Wang ◽  
Juncheng Zhou ◽  
Yuhao Chen ◽  
Liu Xiao ◽  
Guojia Huang ◽  
...  

Abstract An intensity modulated fiber-optic carbon monoxide (CO) sensor by integrating in-situ solvothermal-growth Ag/Co-MOF sensing film is fabricated and evaluated. The Michelson interference sensing structure is composed of single-mode fiber (SMF), enlarged taper, thin-core fiber (TCF), and Ag film as the reflector. Ag/Co-MOF was coated on the cladding of the TCF as the sensing material, and the enlarged taper is located between TCF and SMF as the coupler. The structure, morphology, compositions and thermal stability of the Ag/Co-MOF sensing film were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), etc. The sensitivity of the sensor is 0.04515 dB/ppm, and the fitting parameter of the CO concentration is 0.99876. In addition, the sensor has the advantages of good selectivity, good signal and temperature stability, and it has potential application in trace CO detection.


2021 ◽  
Author(s):  
Putha Kishore ◽  
Dantala Dinakar ◽  
Manchineellu Padmavathi

The sensors presented in this chapter are fiber optic intensity modulated vibrations sensors which are non-contact (extrinsic sensor) to the vibrating object. Three sensors presented make use of non-contact vibration measurement method with plastic fiber using distinct designs, improvement of the sensor response and advantages of one sensor over the other for diverse applications. First discussed about dual plastic optical fiber vibration sensor design and its response. Secondly, discussed about 1x2 fused coupler plastic optical fiber vibration sensor design with advantages over the first one. Finally, discussed about the 2x2 fused coupler plastic optical fiber vibration sensor design along with advantages than other two methods. At the end reported the final results with comparison.


2010 ◽  
Vol 437 ◽  
pp. 61-65 ◽  
Author(s):  
Ling Li Cheng ◽  
Jian Wei Yu ◽  
Xiao Fen Yu

A 6-DOF monolithic nanopositioning stage is developed for three coordinate measuring machines (CMM) with nanometer resolution. The stage consists of a monolithic flexure hinge mechanism, six piezoelectric actuators and six fiber-optic displacement sensors. A mathematical model of the constraint optimization problem is presented. Based on the solution of the optimization problem, the final design of the 6-DOF stage is also presented. The numerical analysis on static and dynamic behavior of the stage is done by using the finite element method. The experimental results of the performance of the 6-DOF stage are presented.


Sign in / Sign up

Export Citation Format

Share Document