scholarly journals Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

2015 ◽  
Author(s):  
Brandon Benson
2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Guilherme Soares Zahn ◽  
Regina Beck Ticianelli ◽  
Mitiko Saiki ◽  
Frederico Antonio Genezini

In IPEN’s Neutron Activation Laboratory (LAN/IPEN), thin stainless steel sample holders are used for gamma spectrometry in NAA measurements. This material is very practical, but its chemical composition may be troublesome, as it presents large amounts of elements with intermediate atomic number, with attenuation factors for low-energy gamma-rays that must not be neglected. In this study, count rates obtained using different sample holders were compared. To accomplish that, an Am-241 source, with 59-keV gamma emission, was used so that low-energy gamma attenuation differences can be determined. Moreover, in order to study the energy dependence of these differences, a Ho-166m source was also used. From these results, it was possible to analyze the experimental error associated to the variations between sample holders, with the aim of introducing an addictive term to the uncertainty analysis of comparative Neutron Activation Analysis results.


1998 ◽  
Vol 536 ◽  
Author(s):  
V. P. Popov ◽  
A. K. Gutakovsky ◽  
I. V. Antonova ◽  
K. S. Zhuravlev ◽  
E. V. Spesivtsev ◽  
...  

AbstractA study of Si:H layers formed by high dose hydrogen implantation (up to 3x107cm-2) using pulsed beams with mean currents up 40 mA/cm2 was carried out in the present work. The Rutherford backscattering spectrometry (RBS), channeling of He ions, and transmission electron microscopy (TEM) were used to study the implanted silicon, and to identify the structural defects (a-Si islands and nanocrystallites). Implantation regimes used in this work lead to creation of the layers, which contain hydrogen concentrations higher than 15 at.% as well as the high defect concentrations. As a result, the nano- and microcavities that are created in the silicon fill with hydrogen. Annealing of this silicon removes the radiation defects and leads to a nanocrystalline structure of implanted layer. A strong energy dependence of dechanneling, connected with formation of quasi nanocrystallites, which have mutual small angle disorientation (<1.50), was found after moderate annealing in the range 200-500°C. The nanocrystalline regions are in the range of 2-4 nm were estimated on the basis of the suggested dechanneling model and transmission electron microscopy (TEM) measurements. Correlation between spectroscopic ellipsometry, visible photoluminescence, and sizes of nanocrystallites in hydrogenated nc-Si:H is observed.


1981 ◽  
Vol 55 (2) ◽  
pp. 406-408 ◽  
Author(s):  
N. De Leon ◽  
J. Guldberg ◽  
J. Salling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming Fang ◽  
Yoann Altmann ◽  
Daniele Della Latta ◽  
Massimiliano Salvatori ◽  
Angela Di Fulvio

AbstractCompliance of member States to the Treaty on the Non-Proliferation of Nuclear Weapons is monitored through nuclear safeguards. The Passive Gamma Emission Tomography (PGET) system is a novel instrument developed within the framework of the International Atomic Energy Agency (IAEA) project JNT 1510, which included the European Commission, Finland, Hungary and Sweden. The PGET is used for the verification of spent nuclear fuel stored in water pools. Advanced image reconstruction techniques are crucial for obtaining high-quality cross-sectional images of the spent-fuel bundle to allow inspectors of the IAEA to monitor nuclear material and promptly identify its diversion. In this work, we have developed a software suite to accurately reconstruct the spent-fuel cross sectional image, automatically identify present fuel rods, and estimate their activity. Unique image reconstruction challenges are posed by the measurement of spent fuel, due to its high activity and the self-attenuation. While the former is mitigated by detector physical collimation, we implemented a linear forward model to model the detector responses to the fuel rods inside the PGET, to account for the latter. The image reconstruction is performed by solving a regularized linear inverse problem using the fast-iterative shrinkage-thresholding algorithm. We have also implemented the traditional filtered back projection (FBP) method based on the inverse Radon transform for comparison and applied both methods to reconstruct images of simulated mockup fuel assemblies. Higher image resolution and fewer reconstruction artifacts were obtained with the inverse-problem approach, with the mean-square-error reduced by 50%, and the structural-similarity improved by 200%. We then used a convolutional neural network (CNN) to automatically identify the bundle type and extract the pin locations from the images; the estimated activity levels finally being compared with the ground truth. The proposed computational methods accurately estimated the activity levels of the present pins, with an associated uncertainty of approximately 5%.


2021 ◽  
Vol 7 (21) ◽  
pp. eabg3032
Author(s):  
Jana Petrović ◽  
Alf Göök ◽  
Bo Cederwall

We introduce a neutron-gamma emission tomography (NGET) technique for rapid detection, three-dimensional imaging, and characterization of special nuclear materials like weapons-grade plutonium and uranium. The technique is adapted from fundamental nuclear physics research and represents a previously unexplored approach to the detection and imaging of small quantities of these materials. The method is demonstrated on a radiation portal monitor prototype system based on fast organic scintillators, measuring the characteristic fast time and energy correlations between particles emitted in nuclear fission processes. The use of these correlations in real time in conjunction with modern machine learning techniques provides unprecedented imaging efficiency and high spatial resolution. This imaging modality addresses global security threats from terrorism and the proliferation of nuclear weapons. It also provides enhanced capabilities for addressing different nuclear accident scenarios and for environmental radiological surveying.


Sign in / Sign up

Export Citation Format

Share Document