scholarly journals Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

2017 ◽  
Author(s):  
Hongbin Zhang ◽  
Ronaldo Szilard ◽  
Aaron Epiney ◽  
Carlo Parisi ◽  
Rodolfo Vaghetto ◽  
...  
1977 ◽  
Vol 34 (2) ◽  
pp. 209-216
Author(s):  
Timothy C. Kessler ◽  
Gary B. Fader

2008 ◽  
Vol 2008 ◽  
pp. 1-7
Author(s):  
Maria Regina Galetti

The task of regulatory body staff reviewing and assessing a realistic large break loss-of-coolant accident evaluation model is discussed, facing the actual regulatory licensing environment related to the acceptance of the analysis of emergency core cooling system performance. Especially, focus is directed to the question of how to fulfill the requirement of quantifying the uncertainty in the calculated results when they are compared to the acceptance criteria for this system. As it is recognized that the regulation governing the loss-of-coolant accident analyses was originally developed by the United States Nuclear Regulatory Commission, a description of its evolution is presented. When using a realistic evaluation model to analyze the loss-of-coolant accident, different approaches have been used in the licensing arena. The Brazilian regulatory body has concluded that, in the current environment, the independent regulatory calculation is recognized as a relevant support for the staff decision within the licensing framework of a realistic analysis.


2016 ◽  
Vol 196 (3) ◽  
pp. 598-613 ◽  
Author(s):  
Kyung Mo Kim ◽  
Yeong Shin Jeong ◽  
In Guk Kim ◽  
In Cheol Bang

Nukleonika ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Tomasz Bury

Abstract The problem of hydrogen behavior in containment buildings of nuclear reactors belongs to thermal-hydraulic area. Taking into account the size of systems under consideration and, first of all, safety issues, such type of analyses cannot be done by means of full-scale experiments. Therefore, mathematical modeling and numerical simulations are widely used for these purposes. A lumped parameter approach based code HEPCAL has been elaborated in the Institute of Thermal Technology of the Silesian University of Technology for simulations of pressurized water reactor containment transient response. The VVER-440/213 and European pressurised water reactor (EPR) reactors containments are the subjects of analysis within the framework of this paper. Simulations have been realized for the loss-of-coolant accident scenarios with emergency core cooling system failure. These scenarios include core overheating and hydrogen generation. Passive autocatalytic recombiners installed for removal of hydrogen has been taken into account. The operational efficiency of the hydrogen removal system has been evaluated by comparing with an actual hydrogen concentration and flammability limit. This limit has been determined for the three-component mixture of air, steam and hydrogen. Some problems related to the lumped parameter approach application have been also identified.


Sign in / Sign up

Export Citation Format

Share Document